
Adaptable Exploit Detection through Scalable
NetFlow Analysis

Alan Herbert
Rhodes University

Grahamstown, RSA
Email: g09h1151@campus.ru.ac.za

Barry Irwin
Rhodes University

Grahamstown, RSA
Email: b.irwin@ru.ac.za

Abstract—Full packet analysis on firewalls and intrusion de-
tection, although effective, has been found in recent times to be
detrimental to the overall performance of networks that receive
large volumes of throughput. For this reason partial packet
analysis technologies such as the NetFlow protocol have emerged
to better mitigate these bottlenecks through log generation. This
paper researches the use of log files generated by NetFlow version
9 and IPFIX to identify successful and unsuccessful exploit
attacks commonly used by automated systems.

These malicious communications include but are not limited
to exploits that attack Microsoft RPC, Samba, NTP (Network
Time Protocol) and IRC (Internet Relay Chat). These attacks
are recreated through existing exploit implementations on Metas-
ploit and through hand-crafted reconstructions of exploits via
known documentation of vulnerabilities. These attacks are then
monitored through a preconfigured virtual testbed containing
gateways and network connections commonly found on the
Internet. This common attack identification system is intended for
insertion as a parallel module for Bolvedere in order to further
the increase the Bolvedere system’s attack detection capability.

Index Terms—Digital forensics, Network security, Intrusion
detection

I. INTRODUCTION

This research builds on the module repertoire that is com-
patible with the Bolvedere platform currently in development
by the authors of this paper. The Bolvedere platform is a
highly adaptable and scalable NetFlow processor intended
for distributed identification of malicious network activity.
All modules developed for this platform run concurrently,
be it remote to the Bolvedere host system or within it. The
implementation brought forward in this research is in respect
to development of a new module to run on the Bolvedere
system [1].

A. Problem Statement

Issues that need to be addressed within this area of research
are that of latent security in large scale networks. Included in
this is network traffic monitoring to protect users from vul-
nerabilities that can cause their systems to perform malicious
tasks within the network. Exploitation of these vulnerabilities
can lead to inclusion within botnets, proxying of malicious
data, and other malicious activities that lead to disruption of
natural flow of data within the Internet.

For this reason automated systems are required to monitor
interactions within networks that source traffic onto the Inter-
net. These systems should then provide a feedback mechanism
to better detect and mitigate malicious activities introduced
into the Internet.

B. Research Goals
This research in its entirety aims to develop a modular

platform for which modules that process network flows can
interface in order to discern events on a network. Adaptability
is taken into account in the form of system resources required
to run a Bolvedere system. Bolvedere is able to execute
itself on a single host machine that is Linux OS (Operating
System) compatible as well as further scale out over multiple
threads, multiple processes, multiple processors and multiple
separate physical hosts. This adaptability and scalability also
includes support for multiple languages as well as hardware
technologies such as GPUs (Graphical Processor Unit) and
FPGAs (Field-Programmable Gate Array). Furthermore, this
scalability ensures the ability for Bolvedere to take on the
task of Internet level network flow discernment as to whether
a network flow is malicious or not.

The first question proposed by this research was if one
could use NetFlow logs to detect a malicious exploit. With
this question in mind this research’s first goal was to collect
NetFlow logs generated from network flows created by ma-
licious network exploits. Sections IV-B1 and IV-B2 discuss
how these resultant NetFlow logs were observed and what
distillation process occurred when attempting to produce rule
sets from different exploits.

The application of these rule sets within a Bolvedere module
is then brought to light in Section IV-C which discusses the
accuracy of such an automated mechanism, as well as where
this module falls short and how these failings can be mitigated.

This paper begins with a literature review in Section II
which deals with background knowledge required to better
understand this research and why it is necessary. Following
this, Section III discusses how this Bolvedere module was im-
plemented through an understanding of the tools and libraries
used within it. Finally, results are discussed in Section IV and
a final conclusion is presented in Section V.

II. LITERATURE REVIEW

As the main data descriptor of this research’s implementa-
tion is based on NetFlow [2], the first topic dealt with in this
paper is the aforementioned technology. Once this technology
is outlined this paper then moves on to discuss and explain
current malicious activities that occur on the Internet and how
they are accessed and acted upon.

A. NetFlow
The NetFlow protocol is best described as a means of

logging network flows that pass through a flow monitoring

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 121

device in a communication pair’s route. A network flow is
defined as a unidirectional connection and communication be-
tween a host and any other host, multicast group, or broadcast
domain in the form of a sequence of packets [3]. A flow
monitor implementing the NetFlow protocol can collect fields
out of these communications, write them into predefined fields
(restricted either by NetFlow protocol version or by use of a
known template) and then transmit them to a logging host for
analysis or storage [4]. There have been multiple versions of
NetFlow with wide-spread support over multiple firewall and
routing devices on the Internet.

The need to update the NetFlow protocol over the years
arose from multiple factors. First, the addition of IPv6 (Internet
Protocol version 6) [5] that was brought about by the IP
address exhaustion [6] of the IPv4 (Internet Protocol version
4) [7] space required amendments to be added to the NetFlow
protocol. Furthermore, the need for better use of network
resources grew as the amount of traffic passing through flow
monitor points increased. Finally, the requirement to adapt
these records to one’s needs gave way to updating the NetFlow
protocol to give users the ability to break out of the predefined
logging fields determined by older versions of NetFlow into a
dynamic space that allows for field collection through a user
created predefined and distributed template [4]. This method
of log collection also has additional unused record space for
later allocation of new network protocols released at future
dates.

Major updates to the original NetFlow standard have in-
cluded the addition of new fields and further standardisation
and this resulted in version 5 of the protocol. This version
allowed for logging subnet masks and AS (Autonomous Sys-
tem) numbers [8]. Version 8 saw inclusion of aggregation of
records that were first defined in version 5 [9]. More recently,
version 9 continued to build on the freedom brought forth by
version 8 through the addition of the template packet to the
NetFlow protocol. This template packet allowed one to define
the fields to be logged in a record and the order in which they
are logged from a flow [4].

These templates are coupled with template identification
numbers that allow for use of multiple templates and is defined
by the 2-byte-long template identification field within the
NetFlow protocol. Although IDs 0 through to 255 are re-
served for use by specific predefined flow templates, template
identification numbers 256 through to 65535 are available for
public use; a fairly large template space. This template count
further extends the memory requirements of these devices
and most devices supporting NetFlow version 9 limit the
number of templates that can be stored to a count far less
than the available 65535 due to memory and performance
limitations [2].

B. Malicious Attacks

A malicious event acted upon something or someone is
simply defined as an action with intent to do harm to that
entity. Within the Internet these entities are commonly end-
point hosts. These hosts are typically targeted in order to
collect information or prevent other entities on the Internet
from accessing the information provided by the host; be it
private or public. This section intends to focus on two main
reasons for gaining access to a system through malicious
means and these are denial of service and information theft.

1) Denial of Service: The goal of a DDoS (Distributed
Denial of Service) attack is the same as that of a (DoS Denial
of Service) attack in that they both aim to bring down a service
that exists on a network. The key difference between a DDoS
attack and a DoS attack is that a DDoS attack uses multiple
physical source hosts rather than a singular host. These hosts
usually exist within a botnet [10]. Note that a DoS attack can
appear to be a DDoS attack through the spoofing of multiple
IPs; this makes detecting a DDoS attack difficult.

2) Identity Theft: Identity theft refers to any form of theft
that enables the thief to perform actions of that of the victim
while holding all the credentials needed to be identified as that
victim. This on the Internet includes usernames and passwords,
private identifying information and man-in-the-middle attacks
to gain access to tokens passed between hosts in order to gain
access to the victims session [11].

3) Information Theft: This is simply stealing information
that is private, be it from a single person, group or company.
This information is usually targeted and sensitive to public
viewing or viewing by a competitor.

4) Information Destruction: On the other end of the spec-
trum when compared to information theft, information de-
struction can be performed through ransomware or simply
destruction of a targets information store, be it deletion of
a database or project. Ransomware aims to encrypt data with
a key that the attacker holds and typically requires payment
in order to retrieve the key to decrypt one’s data with. If one
fails to acquire this key, be it because of the event timing out
or one’s unwillingness to pay for the data, then the data that is
encrypted is effectively as good as destroyed [12]. Complete
outright destruction of data is usually a method used to bring
down companies as if a company were to lose its database of
operations, it would be as if the company never existed from
that point on. It is note worthy that the cost of data recovery in
the event of data destruction can be enough to put a company
under in itself [13].

C. Common Attack Vectors

There are multiple ways to perform analysis on potential
targets and multiple methods to go about executing an attack
on these targets. These all fall into specific categories of which
the ones this research is aimed to analyse and identify are listed
below.

1) Brute-Force Attacks: This form of an attack is applicable
occurs in multiple forms and is defined by an attack method
having little to no intelligence [14]. The method of this attack
is to simply to try every combination from start to finish of the
attack space until a solution is found. As this attack intends
to attempt every combination as input to a system in order to
gain access to information held by the system, this approach is
time consuming and thus attempts to leverage high throughput
hardware in order to achieve this task in a acceptable time [15]
(this hardware includes GPU through the use of CUDA and
OpenCL).

This form of attack can however be broken down into
two subsets, these are offline and online brute-force attacks.
A offline brute-force attack is typically performed against a
data that exists on the attackers storage devices and is locally
accessible; these include databases of hashed passwords. For
this example an attacker would typically attempt to recover the
password used to generate a hash through generating every

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 122

possible input for the respective hashing algorithm until the
output matches that of the hash that one is trying to recover
a password for. At this point the input used is the original
password that the attacker is looking for.

An online brute-force attack refers to an attack on a remote
service or system. Typically this is done through guessing
login credentials until access is gained. This kind of approach
can be seen used on systems that require a username and
password such as SSH or a website. One would try to generate
combinations of username and password until a successful
login occurs.

2) Vulnerability Exploitation: Humans are not perfect and
as hardware and software are developed by people, there
are imperfections introduced into the systems. These imper-
fections lead way to unexpected behaviour that when acted
upon lead to results that fall outside of the systems intended
operation. These result can range from simple errors in output
to code being remotely uploaded and executed on the system
or the system being shut down completely.

Malware such as Blaster Worm [16], Conficker [17] and
SQL Slammer [18] use these vulnerabilities to upload and
execute themselves upon remote hosts. These vulnerabilities
exploited by these malware include MS03-026 [19], MS03-
039 [20], MS08-067 [21] and the Microsoft SQL Server
Resolution Service [18]. Even though these are well known
vulnerabilities that have long since been fixed there are still
many existing systems on the Internet that are still vulnerable
to these attacks due to improper maintenance of said systems.
These iconic attack methods were chosen to show their age
(dating back to January 2003) and further exclaim the neglect
shown by some system administrators.

3) Social Engineering: There are many methods both phys-
ical and digital of social engineering but this text will focus on
two methods used on the Internet to explain what it is. These
methods are phishing and baiting. The idea behind social
engineering is to attack the human psyche through misleading
someone to act in a way they would usually not, or exploiting
one’s natural characteristics into acting upon something that
should not be acted upon. The former is prevalent in phishing
where the latter is used in baiting.

Phishing gets someone to give up private information by
pretending to be something or someone it is not. A simple
example of a phishing attack is a website pretending to be an
existing bank that it is not. If it were to successfully trick
someone into entering their banking details the third-party
that set up the website would then gain access to that private
information [22].

Baiting on the other hand relies on a human trait known
as greed. If someone really wants something that they can’t
get and a malicious source offers that something, it opens up
a vector of attack. This is commonplace in pirated software
available on the Internet. Someone wants to use a piece of
software that they have to pay for, why not offer it for free
and attach malware to the executable. Why even hide behind
the faade of a executable when one could just rename the
malicious executable and change the display icon to mimic
that of the original software; once the user clicks run it doesn’t
really matter what the user sees next as the attack is already
successful [23].

D. Availability of Attacks
The large number of malicious attacks occurring on the

Internet on daily base is due to two reasons. The first is the
ease of which one can perform these attacks. For the most part
someone with little to no knowledge of how a vulnerability is
exploited on a network can simply get hold of tools and scripts
to run at the press of a button that one points at a target. The
second is that many malicious attacks are automated, be it via
botnet [10] or by a malicious preconfigured system.

There is a market for these systems, botnets and zero day
attacks (a vulnerability that is yet to be exploited and is
unknown to the vendor) and these can fetch a high price
depending on the capabilities of the exploit, however there are
freely available tools for configuring and performing malicious
exploits of systems on a network [24]. These exploits are for
the most part well known and fixed and for a target to fall
victim to these exploits is due to their own negligence in
terms of keeping their system up to date. This section will
deal with the two common ways exploits are performed in a
legal penetration testing environment.

1) Metasploit: This software suit that is directed at pen-
etration testers to test the security of networks and users on
it. It houses a wide variety of tools that allow for assessment
of software and systems running on a network, as well as the
awareness of the users on a network through features like the
generation of phishing campaigns to test users on a network.
Coupled with these features is a database of fully functional
exploits that are known to the penetration testing community.
This means that one can install Metasploit, which is free, and
launch these attacks on a target host on a network at one’s
leisure [25]. This can of course be for Metasploits intended
purpose, that being security conciousness, or for malicious
reasons.

For intended reasons Kali Linux exists as a penetration
testing operating system that comes pre-installed with Linux
based software that one would use for penetration testing
of a system or network [26]. Furthermore, the Metasploit
community supports this Linux distribution and thus regular
updating of the distribution and tools on it is freely available.

2) Reuse of Code in the Wild: There is a need to understand
existing malware on the Internet and for this collection and
reuse of such malware in a safe environment, while monitoring
the characteristics of the captured malware, can be invaluable
in combating it [27]. There are multiple methods of capturing
malware and the class of software that typically performs this
action is referred to as a honeypot; although this is not the
only way to capture a piece of malware. A honeypot acts as
a vulnerable system in order to attract malicious attacks [28].
Any attacks that are targeted at the honeypot are then logged
and any data upload is too. From this point one can set up
an environment such as a virtual network, or if one has the
resources a live, environment in which to rerun these malware
and analyse their characteristics.

Other methods of malware collection range from malware
sharing communities to collecting the remnants of uploaded
scripts and programs to a server that may have resulted in
a failed or successful attack. Either way, deletion of these
malware are a loss to the community trying to combat these
forms of malicious attack and one should attempt to pass on
the malware to a third-party that has a use for it (hopefully
not malicious in nature).

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 123

Fig. 1: Bolvedere System Overview

III. BOLVEDERE MODULE IMPLMENTATION

This research collects and analyses NetFlow logs in order
to discern whether a network flow could have attempted a
malicious attack or not. It is understood that a non-malicious
network flow can give the same NetFlow log results as Net-
Flow log generated from a malicious flow. It was decided that
dealing with false positives was better than dealing with false
negatives in this system as this would mean that a successful
attack would go unrecognised. The results of these true and
false positives would both be presented to the user with all
related information for the user to discern, be it through further
processing or if the traffic is low enough by one’s self, as this
module is intended to identify malicious attacks and not to
take mitigating action.

In order to achieve this and ensure adaptability and scalabil-
ity, this module intended for use with Bolvedere required some
careful planning. A short discussion on tools used and method
of configuration will be pointed out in this section as to help
the reader better understand how this intended adaptability and
scalability was achieved.

A. Tools Used
The two major potential bottlenecks identified in this system

was on the network interface and the rule set processor.
Referring to Figure 1 with the understanding that this module
is a processor in the Bolvedere system means that the network
component of the system has to act in a distributed manner
between a publisher and the connected processors. For this
the use of a broadcast groups was used to allow for a single
network packet sent by a publisher to arrive at multiple
destinations.

The library used for handling these broadcast groups was
ZMQ (Zero Message Queue). The ZMQ library gives access
to a distributed networking model that makes use of sockets
and broadcasting to allow for increased concurrency within
a system. Furthermore, these transmitted messages ensure
atomicity over the entire broadcast group. The ZMQ transport
layer can be set to in-process, inter-process, TCP and multicast
modes depending on whether the communications are happen-
ing within a process or between processes on a single host, or

between processes on separate hosts [29]. Furthermore, ZMQ
is a library that is supported by over 30 languages and the
entirety of the protocol is documented. this means that no
matter what processor module one intends to implement for
Bolvedere, one can choose the best language for the job.

In order to quickly access the rule sets to discern whether
a network flow is malicious or not, a SQL (Structured Query
Language) database was used. There are many varients of SQL
databases which range from a file on disk, as SQLite [30]
implements, to entire databases loaded into RAM to achieve
maximum throughput, as implemented MemSQL [31]. Given
these implementations all share a common language, one can
swap out the back-end of this module according to the needs
and/or limitations of the host system.

The rest of the software which applies the rule set to
incoming NetFlow logs of this module was written in C and
a Python based prototype also exists.

B. Configuration
Three stepsC are required for configuration which are listed

below:
• Select publishers that the module should listen to in order

to receive processed NetFlow logs.
• Load in which rules the module should implement in

order to discern these received NetFlow logs so that
detection potential malicious activity can occur.

• Select a method of notification for when detection occurs.
The first point expanded upon will be that of publisher

selection. A module in the Bolvedere system is allowed to
subscribe to more than one publisher to receive its processed
NetFlow logs from. The format in which the information
arrives is predetermined at configuration time of a publisher
and is intended to be in a format best suited for use by listening
modules.

The second point is that of loading the rule sets. One of
these malware detection modules may attempt to detect one
or many forms of malware signatures. If the rule set gets too
large and one wishes to break up the rule set into smaller
chunks of work in order to better scale the systems ability to
process this module, all one simply needs to do is start more of
these modules that only deals with a subset of the entire rule
set. Furthermore, these new modules can run concurrently with
the rest of the modules on a separate physical host completely,
or on a separate processor thread within the same host.

Lastly the method in which these findings are presented to
the user is optional. Currently the options of receiving daily
reports via an email or presenting findings to a terminal at
runtime are available for selection. The use of a terminal
allows piping of outputs from this module into other appli-
cations for further processing. Any option in between can
trivially be implemented at a later stage, however the question
of did this implementation achieve its goal did not rely on this
functionality.

IV. RESULTS

This paper sought to collect NetFlow logs generated by
malicious network flows on a network and then analyse them
for generating rule sets for use in a Bolvedere system module
to detect further attempts of these attacks. For this reason this
results section will be broken down into two major parts. The
first part will deal with the collection and analysis of NetFlow

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 124

Fig. 2: Virtual Network Overview

logs generated by controlled malicious attacks in order to
build rule sets to detect further attempts of these attacks. The
second part of these result will be targeted at the running
of the automated Bolvedere system module that implements
these rule sets to detect repetitions of these recorded malicious
attacks.

A. Environment
These tests are all performed within a virtual environment.

A basic configuration of the virtual network this virtual
environment uses can be seen in Figure 2. One can see that
hosts are broken up into 4 groups and these are listed below
with a short description:

• Malicious Hosts: These hosts launch malicious attacks
on vulnerable and invulnerable hosts typically through
the use of Metasploit or custom written code as to the
documented exploitation attack vector.

• Vulnerable Hosts: These hosts are built to be vulnerable
to a monitored attack.

• Invulnerable Hosts: These hosts are built to be made
resistant to a monitored attack.

• Gateway/NetFlow Source: This host acts as a gateway
to an external network (advertises it is connected to the
Internet) and also runs the NetFlow log generator to store
the network flows that pass through it. This host uses
softflowd to generate all NetFlow logs [32].

One can observe that in order for the malicious host to
communicate with a vulnerable or invulnerable system it has
to first pass through the gateway system running softflowd.
This means that the network flows generated between these
hosts can be fully logged and analysed into rule sets at a later
point.

B. NetFlow Logs and Rules Generated
The purpose of this section is to collect the NetFlow

logs generated by softflowd when observing the network
flows caused by malicious attacks. The defining features of
these generated logs are then extracted by an automated rule
generator and used to form rule sets that can discern further
attempts of the attacks that generated the network flow. The
rule generator simply observes a repeated attack and collects
relevant metadata about the attack before generating a rule

for that form of attack. The NetFlow logs generated that the
automated rule generator observed have been tabulated and
can be referred to in Tables I to VIII. These results were
gathered over 6 iterations of which 3 iterations were designed
to be successful and 3 were designed to fail. The failures
did not show a large variance in results and so due to the
space limitations of this paper have been omitted but will still
be discussed later in this section. Also, due to the nature of
networking technologies there is some variance in the collected
results, this is handled through displaying the result as a range
rather than a set value where necessary.

Terminology used in these results is explained below:
1) Attacker: The host that is implementing an exploitation.
2) Target: The host which the attacker is attempting to

exploit.
3) Victim: A third-party that is affected due to an Attackers

exploit.
4) A, B and C: These refer to randomly assigned ports

by the operating system when a connection is created
without being told to use a specific port.

5) N: This refers to all numbers after the last until process
is terminated.

6) X and Y: These refers to counters of varying size relating
to packet and byte counts.

7) Exploit: Used to define the stage of the exploit in which
the exploitation is being attempted.

8) Payload: Used to define the stage of the exploit in which
the payload is being transferred and executed on the
system.

9) Runtime: Used to define the stage of the exploit in which
the payload is running.

1) Results: Unsurprisingly the first point to note is that
it is the attacker that always starts the communications in
these exploits. The method is usually performed through
fingerprinting a target to identify which services are running
on a system (these logs are not interesting and so have been
omitted). Once a vulnerable service has been identified the
exploit then is executed and if successful the payload is then
uploaded to the vulnerable host and an attacker gains access
to the target in their chosen method. As these vulnerabilities
are found in services running on a host and these services run
on specific ports, it is noteworthy that these specific ports is
what an exploit targets.

A significant point that arose when an exploit was repeated
was that the initial NetFlow log’s packet count, byte count and
service port were consistent (the service port consistency is
important as some services utilize multiple ports). This means
that one can say that for a new NetFlow log between two
hosts, if a set port is connected to that receives a set packet
count with set total byte count, one should check that targeted
host for an occurrence of an attack that is represented by this
signature. Although one should also note that as a NetFlow
log only contains the metadata of a network flow, a perfectly
legitimate network flow could also cause this NetFlow log to
be generated.

Some finer details to notice is that MS08-067 (exploita-
tion of Microsoft RPC (Remote Procedure Call) service)
exploitations tend to have their packet count and byte count
vary more than exploits utilizing other vulnerabilities in these
results. Another point is that the NTP (Network Time Protocol)
monitor list attacks were generated using 3 separate monitor

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 125

TABLE I: NetFlow Logs Generated by a Successful ms08 067 shell Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 445 43 - 47 9900 - 10100
2 Exploit target → attacker 445 A 42 - 44 7600 - 7700
3 Payload attacker → target B Set in Exploit 8 695
N Runtime Bi-Directional B/C Set in Exploit X Y

TABLE II: NetFlow Logs Generated by a Successful ms08 067 vnc Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 445 43 - 47 9900 - 10100
2 Exploit target → attacker 445 A 42 - 44 7600 - 7700
3 Payload attacker → target B Set in Exploit 278 416549
N Runtime Bi-Directional B/C Set in Exploit X Y

TABLE III: NetFlow Logs Generated by a Successful java rmi server Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 1099 6 - 7 358
2 Exploit target → attacker 1099 A 7 567
3 Payload attacker → target A Set in Exploit 7 7400 - 7500
N Runtime Bi-Directional A/B Set in Exploit X Y

TABLE IV: NetFlow Logs Generated by a Successful distcc exec Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 3632 7 656
2 Exploit target → attacker 3632 A 4 276
3 Payload attacker → target B Set in Exploit 4 216
N Runtime Bi-Directional B Set in Exploit X Y

TABLE V: NetFlow Logs Generated by a Successful samba symlink traversal Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 445 10 975
2 Exploit target → attacker 445 A 8 790 - 800
N Runtime Bi-Directional B Set in Exploit X Y

TABLE VI: NetFlow Logs Generated by a Successful samba usermap script Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 139 7 733
2 Exploit target → attacker 139 A 4 356
3 Payload attacker → target B Set in Exploit 3 164
4 Payload target → attacker Set in Exploit B 2 135
N Runtime Bi-Directional B Set in Exploit X Y

TABLE VII: NetFlow Logs Generated by a Successful unreal ircd 3281 backdoor Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A Set in Exploit 3 164
2 Exploit target → victim Set in Exploit A 2 135
N Runtime Bi-Directional A Set in Exploit X Y

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 126

TABLE VIII: NetFlow Logs Generated by a Successful ntp mon list Exploit

Flow Index Exploit Stage Direction Source Port Destination Port Packet Count Byte Count
1 Exploit attacker → target A 123 1 60, 90 or 234
2 Exploit target → victim 123 A up to 10 up to 4460

list request packets, these were of size 60, 90 and 234 as found
out in the wild [33]. As this attack is UDP based reflection
attack, the attacker did not receive any feedback as to success
or unsuccess of their attack and instead only a response was
generated by an NTP server to the victim which the attacker
intended to DDoS. For this reason the attacker also requires
the uses of a third-party discovery tool, such as ping, to see
whether the victim was still reachable or not (these ping logs
were not shown as they are not part of the exploit tested
however did exist in the communications).

The failures of these exploits for the most part resulted in a
TCP reset at some point in the exploit attempt. The resulting
NetFlow logs depict this with an initial flow from the attacker
with a response flow of 1 packet that is 46 bytes in length (this
represents a TCP reset). The only two exceptions to this were
the MS08-067 based attacks, which showed a response flow
from the target before a follow up flow was generated in order
to access the payload of which was responded to with a flow
of the aforementioned TCP reset. The second was the NTP
based attacks which because they were UDP based, showed
no response to the exploit in any form.

2) Rule Sets Generated: Tables I to VIII in the Results
section, Section IV-B1, are in the format of the rule sets that
will be given to the Bolvedere module that will attempt to
discern these exploits1. It is notable that these rules outlined by
these tables require far fewer checks in an attempt to discern
a network flow than deep packet analysis does; this is due
to the fact that every packet in a network flow doesn’t get
analysed but rather the existence of a network flow. Coupling
this with the sheer reduction in the amount of throughput the
overall system has to handle as a NetFlow log only contains
the metadata of a network flow. This allows for multiple
NetFlow source nodes to sink their generated logs into a fewer
hosts running Bolvedere than the equivalent amount of hosts
required for a deep packet analysis solution.

C. Automated Module in Action

In order to check proper functionality and usability of this
Bolvedere module, one has to provide control data for the
results to be compared against. For this reason legitimate
network traffic is required to the services running on the
vulnerable host. In this testing, the legitimate connections and
use of the services on the vulnerable host was performed by
bots. These bots were programmed to perform simple tasks
that required use of these services at random times ranging
between 500 milliseconds and 10 seconds. One must note
that the vulnerable target host was running every exploitable
service in which the rule sets were generated for allowing
for ease of testing2. Furthermore, Microsoft Windows services
were made available on this system through use of a Windows

1The tables were developed this way to save space.
2This system is provided by RAPID7 and is available for download at

https://information.rapid7.com/metasploitable-download.html

Fig. 3: Comparison of Success versus Failure of Network Flow
Identifications

XP virtual machine runnining on the vulnerable host that was
configured to bridge its network interface with that of the
vulnerable host system. At runtime, the bots were first enabled
to start communicating with the vulnerable host and then the
attacks were manually launched and results observed through
the terminal display of the Bolvedere module.

Listing 1: Terminal Output of Bolvedere Module
[1 0 . 4 2 . 0 . 4 5 : 4 5 6 7 7 −> 1 0 . 4 2 . 0 . 3 3 : 4 4 5 ,

S i z e : 9 9 9 1 ,
Count : 4 4] : P o t e n t i a l ms08 067 she l l

[1 0 . 4 2 . 0 . 1 3 : 3 4 7 8 2 −> 1 0 . 4 2 . 0 . 3 3 : 4 4 5 ,
S i z e : 1 5 2 3 2 ,
Count : 1 1 3] : No m a l i c i o u s a c t i v i t y found

[1 0 . 4 2 . 0 . 6 8 : 4 0 0 2 9 −> 1 0 . 4 2 . 0 . 3 3 : 1 2 3 ,
S i z e : 6 0 ,
Count : 1] : P o t e n t i a l n t p m o n l i s t

[1 0 . 4 2 . 0 . 1 3 : 3 7 0 8 7 −> 1 0 . 4 2 . 0 . 3 3 : 1 3 9 ,
S i z e : 2 3 0 1 1 ,
Count : 1 4 6] : No m a l i c i o u s a c t i v i t y found

[1 0 . 4 2 . 0 . 1 0 3 : 2 8 9 2 8 −> 1 0 . 4 2 . 0 . 3 3 : 4 4 5 ,
S i z e : 1 8 0 0 2 ,
Count : 1 7 4] : No m a l i c i o u s a c t i v i t y found

Testing occurred over 124 separate connections consisting
of multiple network flows depending on the task at hand. The
success or failure of a result was considered on a per con-
nection bases and were discerned as to whether a connection
was malicious by the NetFlow logs generated by the entire
connection. Terminal output of this module can be referred
to in Listing 1 which includes a false positive regarding the

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 127

detection of a ntp mon list attack. This was in fact a legitimate
request for the monitor list from the NTP server. Referring to
Figure 3 one can see the results produced by these 124 separate
connections.

Of these 124 connections 117 were successfully identified
as either a malicious or legitimate connection where the
only 7 failures were false negatives produced when trying to
determine whether a monitor list request from the NTP service
was legitimate or part of a DDoS attack. This means that
the rule set produced for this Bolvedere module is 94.355%
accurate when attempting to discern the exploits recorded in
Tables I to VIII under controlled test conditions.

These results suggest that detection of malicious activities
when legitimate network flows closely resemble that of mali-
cious flows becomes difficult. In the case of ntp mon list,
this is because a legitimate request is used to exploit an
amplification attack on a victim which is near impossible to
detect against other legitimate requests. For this reason it is
suggested that further revisions take into account previous
connections made by an IP address, however memory usage
should be considered before this step is taken.

Considering the high level of accuracy produced by this
module when considering the given rule set and non-
ntp mon list exploit and legitimate connections, these results
hold promise into extension into detection of other malicious
connections as well as extension into real world implemen-
tation. In all, the fact that no malicious connections were
missed even though there were false positives means that this
Bolvedere module has successfully achieved the goal set out
by this research.

V. CONCLUSION

This research aimed to answer two questions, this being
whether NetFlow logs can be used to discern malicious
exploits and whether rule sets can be generated from these
results and automated as a Bolvedere module. After execution
of known exploits through a NetFlow node in a controlled
environment, NetFlow logs were recorded and distilled into
a rule set. Once this rule set was implemented within a
Bolvedere module the accuracy of this module was shown
to be 94.355% when discerning whether a network flow was
legitimate or a specific malicious exploit. Although there
were false positives, no executed exploits were recorded as
false negatives. Given that every network flow containing a
malicious exploit was detected by this Bolvedere module, this
research was deemed successful and further development into
its rule sets and fine tuning of the module itself shows promise
for future iterations and use in live environments.

ACKNOWLEDGMENT

The authors wish to acknowledge the joint support of the
Council for Scientific and Industrial Research (CSIR) and
Rhodes University for the financial support and access to
facilities for this research.

REFERENCES

[1] A. Herbert and B. Irwin, “FPGA Based Implementation of a High
Performance Scalable NetFlow Filter,” in Southern Africa Telecommu-
nication Networks and Applications Conference, D. F. Otten and M. R.
Balmahoon, Eds., 2015, pp. 177 – 182.

[2] Cisco. (2003) NetFlow V9 Export Format. Cisco Systems, Inc. Accessed
13th February 2015. [Online]. Available: http://tinyurl.com/ond3pe8

[3] D. R. Kerr and B. L. Bruins, “Network flow switching and flow data
export,” Jun. 5 2001, uS Patent 6,243,667.

[4] B. Claise, “Cisco systems NetFlow services export version 9,” IEEE
Networking Group RFC, 2004.

[5] S. E. Deering, “RFC 2460: Internet Protocol, version 6 (IPv6) specificat,”
1998.

[6] G. Huston. (2014, February) IPv4 Address Re-
port. Accessed 6th February 2014. [Online]. Available:
http://www.potaroo.net/tools/ipv4/index.html

[7] J. Postel, “RFC 791: Internet Protocol,” IETF, Tech. Rep., 1981.
[8] G. Huston. (2006) NetFlow Packet Version 5 (V5). Cisco

Systems, Inc. Accessed 13th February 2015. [Online]. Available:
http://netflow.caligare.com/netflow v5.htm

[9] ——. (2006) NetFlow Packet Version 8 (V8). Cisco Systems,
Inc. Accessed 13th February 2015. [Online]. Available:
http://netflow.caligare.com/netflow v8.htm

[10] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection.” in USENIX Security Symposium, vol. 5, no. 2, 2008, pp. 139–
154.

[11] Y. Desmedt, “Man-in-the-middle attack,” in Encyclopedia of Cryptog-
raphy and Security. Springer, 2011, pp. 759–759.

[12] A. Gazet, “Comparative analysis of various ransomware virii,” Journal
in computer virology, vol. 6, no. 1, pp. 77–90, 2010.

[13] D. M. Smith, “The cost of lost data,” Journal of Contemporary Business
Practice, vol. 6, no. 3, pp. 1–9, 2003.

[14] D. A. Leslie, Legal Principles for Combatting Cyberlaundering.
Springer, 2014, page 7.

[15] C. Paar and J. Pelzl, Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media, 2009.

[16] S. H. Chad Dougherty, Jeffrey Havrilla and M. Lindner. (2003, August)
W32/Blaster worm. CERT. Accessed 9th March 2015. [Online].
Available: http://www.cert.org/historical/advisories/CA-2003-20.cfm

[17] Microsoft. (2009, April) Worm:Win32/Conficker.E. Accessed 31st
October 2015. [Online]. Available: http://tinyurl.com/hdlorbc

[18] C. Shannon and D. Moore, “The spread of the witty worm,” Security &
Privacy, IEEE, vol. 2, no. 4, pp. 46–50, 2004.

[19] Microsoft. (2003, July) Microsoft Security Bulletin MS03-026 -
Critical. Microsoft. Accessed 27th January 2016. [Online]. Available:
https://technet.microsoft.com/library/security/ms03-026

[20] ——. (2003, September) Microsoft Security Bulletin MS03-039 -
Critical. Microsoft. Accessed 27th January 2016. [Online]. Available:
https://technet.microsoft.com/en-us/library/security/ms03-039.aspx

[21] ——. (2008, October) Microsoft Security Bulletin MS08-067
- Critical. Accessed 31st October 2015. [Online]. Available:
https://technet.microsoft.com/en-us/library/security/ms08-067.aspx

[22] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in
Proceedings of the SIGCHI conference on Human Factors in computing
systems. ACM, 2006, pp. 581–590.

[23] S. Staniford, V. Paxson, N. Weaver et al., “How to own the internet in
your spare time.” in USENIX Security Symposium, 2002, pp. 149–167.

[24] L. Bilge and T. Dumitras, “Before we knew it: an empirical study of
zero-day attacks in the real world,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 833–844.

[25] D. Maynor, Metasploit toolkit for penetration testing, exploit develop-
ment, and vulnerability research. Elsevier, 2011.

[26] J. Muniz, Web Penetration Testing with Kali Linux. Packt Publishing
Ltd, 2013.

[27] R. Perdisci, A. Lanzi, and W. Lee, “Mcboost: Boosting scalability in
malware collection and analysis using statistical classification of exe-
cutables,” in Computer Security Applications Conference, 2008. ACSAC
2008. Annual. IEEE, 2008, pp. 301–310.

[28] N. Provos et al., “A virtual honeypot framework.” in USENIX Security
Symposium, vol. 173, 2004, pp. 1–14.

[29] P. Hintjens, ZeroMQ: Messaging for Many Applications. ” O’Reilly
Media, Inc.”, 2013.

[30] SQLite Consortium. (2016) Sqlite: Small. fast. reliable. choose any three.
Accessed 30th April 2016. [Online]. Available: https://www.sqlite.org/

[31] MemSQL Inc. (2016) Make every moment work for you. Accessed
30th April 2016. [Online]. Available: http://www.memsql.com/

[32] D. Miller. (2016) Softflowd. Mindrot. Accessed 30th April 2016.
[Online]. Available: http://www.mindrot.org/projects/softflowd/

[33] L. Rudman and B. Irwin, “Characterization and analysis of ntp ampli-
fication based ddos attacks,” in Information Security for South Africa
(ISSA), 2015. IEEE, 2015, pp. 1–5.

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 128

