
Dridex: analysis of the traffic and automatic
generation of IOCs

Lauren Rudman
Security and Networks Research Group

Department of Computer Science
Rhodes University

Grahamstown, South Africa
Email: g11r0252@campus.ru.ac.za

Barry Irwin
Security and Networks Research Group

Department of Computer Science
Rhodes University

Grahamstown, South Africa
Email: b.irwin@ru.ac.za

Abstract—In this paper we present a framework that generates
network Indicators of Compromise (IOC) automatically from a
malware sample after dynamic runtime analysis. The framework
addresses the limitations of manual Indicator of Compromise
generation and utilises sandbox environment to perform the
malware analysis in. We focus on the generation of network
based IOCs from captured traffic files (PCAPs) generated by the
dynamic malware analysis. The Cuckoo Sandbox environment
is used for the analysis and the setup is described in detail.
Accordingly, we discuss the concept of IOCs and the popular
formats used as there is currently no standard. As an example
of how the proof-of-concept framework can be used, we chose 100
Dridex malware samples and evaluated the traffic and showed
what can be used for the generation of network-based IOCs.
Results of our system confirm that we can create IOCs from
dynamic malware analysis and avoid the legitimate background
traffic originating from the sandbox system. We also briefly
discuss the sharing of, and application of the generated IOCs
and the number of systems that can be used to share them.
Lastly we discuss how they can be useful in combating cyber
threats.

Index Terms—network security; malware; dridex; indicators
of compromise

I. INTRODUCTION

Many security breaches or intrusions on computer systems
are not reported, never made public or even detected [1]. This
allows attackers to have free reign of victims’ computers,
which may have negative effects on organisations, if their em-
ployees’ computers are compromised. When an organisation
finds out about a compromised system or threat and responds
accordingly, the information gathered may be valuable to
others who experience a similar threat. This makes the sharing
of information relating to the detection and identification of
threats on an organisation network an important step in dealing
with cyber-attacks [2]. The more that is known about a threat,
the easier it is to understand, track and counter it.

An Indicator of Compromise (IOC) is defined by Harrington
[3] as “a piece of information that can be used to identify a
potentially compromised system. It could include suspicious
IP addresses, domain names, email addresses, file hashes or a
file mutex. This paper focuses on the automated generation of
network related IOCs using samples of the Dridex malware [4]
strain as test input. The paper will also discuss the process and

analysis used to find the information used in the generation of
indicators.

The described system, takes as input a malware sample
and outputs IOCs, using a collection of 100 Dridex malware
binaries. The systems goal is to focuses on the IOC artefacts
which can be observed on a network connection – particularly
DNS, HTTP, TCP, UDP, ICMP, FTP, SSH and target addresses.
These indicators will be created from the PCAP file containing
network traffic from automated dynamic malware analysis.

The remainder of the paper is structured as follows. Back-
ground information is presented in Section II, followed by
an introduction to the common descriptive languages used for
constructing IOCs in Section III. The generation system and
data collection environment are described in Section IV. An
overview of the observed network traffic , and the processing
thereof is in Section V, followed, in Section VI, by the
process of the generation of IOC’s from the captured traffic.
Section VII concludes the research, while proposed future
enhancements are presented in Section VII.

II. BACKGROUND

There are two types of malware analysis, static and dy-
namic. Static analysis entails analysing the source code of the
malware, never executing it. Dynamic analysis, on the other
hand, is all about executing the malware and observing its
behaviour on a system. Dynamic analysis is usually performed
using a sandbox environment instead of an everyday computer.
This is in case the malware potentially deletes files, changes
the registry or even steals information. A sandbox is a re-
stricted execution environment, that is run on a system, which
allows the safe execution of malware without effecting the host
system [5]. There are quite a few online malware analysis sites,
such as Anubis, Comodo and Malwr, but these do not scale
as they sometimes limit submission speed and the time results
are given. It was decided to use a sandbox that runs locally
on a system, instead of online.

The current system utilises the Cuckoo Sandbox as the anal-
ysis environment. Cuckoo is an open source automated mal-
ware analysis system that provides fast and complete analysis
results [6]. It takes inputs such as Windows executables, DLL
files, PDF documents, Microsoft Office Documents, URLs

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 77

and PHP scripts. Some malware does have anti-virtualization
techniques and does not execute in a sandbox virtual machine
environment [7]. The framework in this paper, will therefore
not be able to successfully generate network IOCs from
them as they will not generate network traffic. However after
successful dynamic analysis of a sample that does execute,
Cuckoo generates a PCAP file of captured packets and a report
which includes screen shots, static analysis results, dropped
files, DNS and HTTP requests and a behaviour summary.

No accepted standard format for the IOCs exists yet. There
are however a few systems that have their own formats, such
as OpenIOC1, Cyber Observable Expression (CybOX)2 and
Structured Threat Information Expression (STIX)3. These are
discussed in Section III. The current systems typically require
the manual input or tagging of of information to generate
IOCs, which is not scalable and would take a lot of time to
generate many IOCs. One of the recent developments in the
sharing of cyber threats is OASIS Cyber Threat Intelligence
(CTI)4. The OASIS CTI Technical Committee, which includes
the U.S Department of Homeland Security and other organi-
sations have come together to develop standards to enable the
analysis and sharing of threats and treat information. They are
intending for the cyber threat information to be shared among
trusted partners and communities [8]. It would be useful to
have a standard format, so that IOCs can be easily shared
without having to convert between formats. This would also
allow for a greater distribution of IOCs and help security teams
in tackling cyber threats.

There are other new solutions which allow for the uploading
of IOCs in multiple formats, such as the AlienVault Open
Threat Exchange (OTX)5. OTX is an online platform for
sharing cyber threat information about malware or fraud cam-
paigns and more. Another solution is the Malware Information
Sharing Platform (MISP)6, which is a platform for sharing
IOCs of targeted attacks.

When conducting a search for tools that automatically
generate IOCs, a few simple scripts such as IOC Creator7

and IOCAware8 were found. IOC Creator generates OpenIOC
formatted IOCs from unstructured data, although it lacks
detail and is not comprehensive interms of network Indicators.
IOCAware uses a Cuckoo report generated after a file is
analysed and only generates an Indicator for an IP address
contacted and no other network IOCs.

Dridex is a type of malware, with the primary goal of
infecting computers, stealing credentials, and obtaining money
from victims bank accounts [4]. It was first observed in the
wild in November 2014 [9]. When the malware is installed, the
computer becomes part of a botnet [4], which can be used to

1http://openioc.org/
2https://cybox.mitre.org/
3https://stixproject.github.io/about/
4https://www.oasis-open.org/
5https://otx.alienvault.com/
6http://www.misp-project.org/
7https://github.com/tklane/openiocscripts/blob/master/ioc creator.py
8https://goo.gl/ipBjZL

send phishing emails. In mid October 2015 many command-
and-control servers used by the Dridex botnet were taken down
by the Federal Bureau of Investigation (FBI) with the help
of the National Crime Agency (NCA) [10]. However in late
October, security researchers found signs that the botnet might
still be functioning [11]. According to [12], Dridex was barely
seen from 24 December 2015, but resumed its operations again
in early January 2016. In February of 2016, it was found that
part of the Dridex botnet may have been hacked as part of its
distribution channel was changed by replacing malicious links
with an installer for the Avira antivirus [13]. In March 2016,
the Dridex botnet started to send SPAM emails with JavaScript
attachments that eventually install Locky ransomware [14].
According to [15], in May 2016, the botnet was compromised
again to distribute a “dummy file” instead of the Dridex binary.

The actual Dridex malware is spread through multiple
types of spam email attacks with a Microsoft Word or Excel
document attached, which includes a payload that downloads
the malware [9]. Macros must be enabled in Microsoft Word
for the payload to work [9]. Once installed, Dridex uses HTML
injections to retrieve banking details [9] and can even steal user
credentials through keystroke logging, form grabbing, stealing
cookies and screenshots [4] [10] [12]. It is able to steal banking
details of nearly 300 financial institutions of generally English
speaking countries [16].

Dridex was chosen as it is a topical malware strain and since
the framework can take any malware binary as an input, we
thought that Dridex would be a useful demonstrative family.
For the purposes of this research, 100 binaries identified to
contain variants of the Dridex strain were analysed to show
how the system operates. These were dated within the last
twelve months.

III. STIX

STIX stands for Standard Threat Information Expression [8]
and is used to describe information about cyber threats. It is
an XML based format and was created to have a language
that allows threat information to be easily stored, analysed
and shared in a consistent manner [17]. We chosen STIX as
the IOC language of choice because is able to represent a
wide number of network level indicators. The level of detail
of a STIX object can vary from one single property of an
object to multiple properties of an object and even the logical
(AND/OR) combination of objects [18]. The allowance for
multiple indicators to be logically combined allows for the
creation of IOCs to be flexible and have a high level of detail
when needed.

STIX allows for the creation of many types of cyber threats,
such as observables, indicators, incidents, exploit targets and
more. We will be focusing on the creation of STIX Indicators
in this paper. A STIX Indicator is made up of CybOX
objects, which contain a number of cyber observables. A STIX
Indicator gives the CybOX objects context by adding a title
and description. A set of related STIX Indicators is grouped
by a STIX Report and and lastly the Indicators and Reports
are grouped using a STIX Package. CybOX is a language used

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 78

to describe ”events of stateful properties that are observable
in a cyber domain” [17]. CybOX’s data model uses an XML
schema as does STIX.

It was decided to create our own reporting module that uses
a filtered PCAP file to generate detailed network-based STIX
Indicators. STIX is also one of the formats chosen by the
OASIS CTI team to be a standard in the future of cyber threat
sharing [8].

A. CybOX Objects

There are a number of different CybOX objects that can
be used to create network related IOCs. The objects we have
used for our system are listed below:

• Address: can be used to store addresses which include
e-mail, MAC and IP addresses.

• Port: stores a port value.
• URI: stores a URI.
• Socket Address: stores an IPv4 address and Port.
• DNS Query: stores properties of a DNS query.
• HTTP Session: can store properties of a HTTP request

and the response.
• Network Connection object, which is used to store infor-

mation regarding any type of network connection.
The Port, URI, Socket Address and DNS Query objects

were used as described in the above list. The Address object
was used to store an IPv4 address only and the HTTP Session
was used to store properties of and HTTP GET/POST request,
without the response. The Network Connection object was
used to represent TCP, UDP, ICMP, SSH and FTP connections.

IV. DATA COLLECTION

A. Cuckoo Sandbox

We implemented the framework on top of the Cuckoo
Sandbox [5] which we used to execute and perform a first
pass analysis on each Dridex malware sample. Cuckoo was
chosen as the analysis tool because it is written in Python and
is fully customizable and extendable [6]. It takes a suspicious
file as an input and performs dynamic malware analysis on
it, then generates reports, screen shots and a PCAP file. Our
framework will focus on taking these reports and PCAP file
to generate network related IOCs.

The latest version of Cuckoo was downloaded and installed
on a Debian 8 server. In order for the sandbox to function,
it needs a VM, a snapshot of the VM and a few variables
in the configuration files changed to suit the setup. Cuckoo
was configured to allow the use of VirtualBox as its virtual
machine manager and each sample was set to run for 30
minutes each. We also had to configure more specific settings
for VirtualBox in Cuckoo, such as making sure Cuckoo ran the
VM in headless mode, the IP address of the virtual machine
and the name of the virtual machine together with its snapshot.

In order for Cuckoo to capture network traffic, the configu-
ration file, auxiliary.conf had to be modified to enable
the packet sniffer, give the path to the local installation of
the tcpdump utility and the name of the network adapter to

capture traffic from. If these are wrong Cuckoo will not be
able to capture traffic, or will record from the wrong adapter.

B. Virtual Machine Setup

As previously stated, VirtualBox was chosen to create and
manage the virtual machines. Windows 7 Ultimate SP1 was
installed on a VM to replicate an everyday user’s computer.
Windows XP may be used to test the in future work, but may
not be too relevant these days as it is outdated and no longer
supported my Microsoft9.

The VM was setup to have 2GB of RAM together with 20
GB of storage. A few outdated versions of programs were
installed such as Mozilla Firefox, Adobe, Microsoft Office
2007, Java, Google Chrome, Flash player, Opera, Adobe air,
iTunes and Mozilla Thunderbird. These were chosen because
they are common everyday programs and Microsoft Office was
chosen because it is one of the programs Dridex uses to run
its payload. However, the samples may be secondary binaries
that do not even utilise this. To ensure minimal security, the
firewall, Windows defender, and Windows updates were turned
off along with not installing an antivirus.

The virtual machine was allowed access to the internet
through a bridged adapter. The IP address of the VM and other
network settings were statically set because Cuckoo needs to
know the IP of the VM.

C. Extracting useful information

A toolchain of Python scripts were used to extract and
analyse information generated by Cuckoo. First a script was
created to filter out (as best as possible) non malware related
traffic from each PCAP file. A non-malicious image file was
submitted to the Cuckoo Sandbox five times to observe traffic
created by the VM’s snapshot. By using the baseline PCAPs,
all of the IP addresses that the VM communicated with were
extracted (excluding the pre-configured DNS server and the
VM’s IP address). These addresses were added to a list of
clean IP addresses to filter from the PCAPs after the malicious
files are analysed by Cuckoo.

Next the DNS queries and responses were extracted, which
allowed us to create a list of clean domain names and the
resolved IP addresses (if the domain was resolved). Tak-
ing a look at the domain names, a second filter list of
clean domains was created. This list included domains such
as ’microsoft.com’, ’google.com’, ’bing.com’, ’windowsup-
date.com’, ’apple.com’, ’sun.com’ and others. These domain
names, of course depend on the specific operating system and
program versions installed on the VM. The IP addresses that
the domains resolved to were added to the first IP filter list,
if they were not previously added.

These two filter lists were used to create a tshark filter
that reads the Cuckoo generated PCAP and creates a new
PCAP. The filtered PCAP has packets of the type TCP, UDP,
DNS, HTTP and ICMP and does not have packets to or from
the clean IP addresses and also does not have the DNS requests

9http://windows.microsoft.com/en-us/windows/end-support-help

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 79

and responses for domains in the domain filter list. Because
of dynamic IP addresses these two filter lists would have to
be regenerated, before running a number of samples through
Cuckoo.

The tshark filter was saved to a bash script so it could
be utilised by a custom Cuckoo processing module that was
developed. A Cuckoo processing module 10 is a python script
that lets you analyse the raw output from Cuckoo and append
some information to a global container that can be used by
the reporting modules. After Cuckoo has executed a sample
in a Virtual Machine the processing modules are called with
the reporting modules following. The processing module that
was created calls the tshark filter script after Cuckoo has
executed a sample for 30 minutes and has generated a PCAP.
The custom processing module worked well for the system and
managed to filter out most unwanted baseline traffic. However,
some samples would very rarely be found contacting local
university IP addresses, such as IT management servers and
printers, so these IPs were added manually to the clean filter
list.

The next step was to work with these filtered PCAPs assum-
ing they only contain malicious traffic and gather information
that may be useful in the creation of IOCs. After all the
enabled Cuckoo processing modules are finished executing,
the reporting modules are run. A custom reporting module
was created for the purpose of retrieving information from the
filtered PCAP and using that information for the creation of
STIX Indicators. Secondary filtering had to be implemented in
the reporting module because of dynamic IP addressing where
some Microsoft domains would resolve to a different address
as found in the baseline PCAP files.

V. NETWORK TRAFFIC OVERVIEW

From the 100 Dridex samples that ran for 30 minutes,
Cuckoo was able to execute 100% of them, with 50 samples
generating network traffic. The traffic only added up to 31,45
MB. We are unsure as to why some of the samples did not
show network activity. According to Rossouw et al. [19], this
may be because the samples were invalid, or only active when
there is user activity or they detected the sandbox and stopped
working. We suspect it may also be because the malware
needed more time to run (longer than 30 minutes) in order
to generate traffic. Another possibility is that some of the
malware was designed to activate only within a certain time
period (which had expired). The take down of much of the
Dridex infrastructure in October may also have played a role,
in the reduced volumes of observed traffic. The following
subsections will discuss the results found when analysing the
filtered PCAPs which we assume contain malicious traffic.
We will show information about TCP connections, DNS
requests and responses, HTTP requests and any hard-coded
IP addresses.

10http://docs.cuckoosandbox.org/en/latest/customization/processing/

A. DNS

Of the 50 samples that generated traffic within 30 minutes
of running, 40 of the samples used the DNS protocol (port
53 UDP). Of the 40 samples, all of them used the pre-
configured DNS server. If some of the samples had used
their own resolver, the information could have been used in
the creation of an IOC. Some malware strains use their own
iterative/recursive resolvers to avoid leaving traces in logs or
caches of preconfigured resolvers on a victim network [19].

Table I shows the 14 domain names that were requested by
some of the 40 samples. Ten of the domains were resolved,
which could mean that the other four are no longer in use or
they could be blocked by the preconfigured resolver set by the
university.

Looking at the TTL values of the ten resolved domains,
seen in Table I the most popular domain, icanhazip.com has
a TTL of 5 minutes. There are three very small values seen
such as 3, 10 and 20 seconds, which are generally related
to Content Delivery Networks (CDNs) [20]. In this case the
three domains are related to online certificates, which could
explain why the values are low. A TTL of zero, which is not
seen in these results, can indicate the use of fast flux domains
which are used to “provide flexibility among the command and
control infrastructure of bots” [21]. However, many domains
using a TTL of zero could be included as part of an extended
IOC in future work.

The most popular domain icanhazip.com was requests by
33 of the 100 samples and 66% of all samples that generated
network traffic. This site is non malicious and is used to
determine the IP address of the host that loaded the page.
According to [22], [23] and [24] malware authors use this
domain and similar sites to obtain the IP of an infected
computer, as part of the environmental determination used
prior to contacting the Command and Control (C&C) node(s).
This domain is often suggested to be used as an IOC according
to [24]. In this case, we think that using this domain as an IOC
is a good idea as it appeared many times from the samples. The
other domain, api.ipify.org, is also a non malicious site and is
similarly used to check the IP address of a client computer.

As seen in Table I, three distinct samples were seen using
the following domains: th.symcb.com11, th.symcd.com12 and
ocsp.thawte.com13 [25] and two of the three samples also
queried crl.thawte.com14. These domains are non malicious
in themselves, but have been identified to be requested by
malware in some cases as referenced above on VirusTotal.
These domains can be used together to create on IOC to
represent the three samples.

The domains malwagroup.org, thedirtydelicious.com,
nerdmeetsgirl.com, tanhadhidown.ru, herssofhaprigh.ru,
nohissandbo.ru were requested by the same sample and
according to [26], these domains are used to download the

11https://www.virustotal.com/en/domain/th.symcb.com/information/
12https://www.virustotal.com/en/domain/th.symcd.com/information/
13https://www.virustotal.com/en/domain/ocsp.thawte.com/information/
14https://www.virustotal.com/en/domain/crl.thawte.com/information/

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 80

TABLE I: Domain names requested from 40 of the samples

Domain name Number of samples IPs resolved DNS TTL

icanhazip.com 33
64.182.208.185
64.182.208.184 300

th.symcb.com 3 23.42.5.163 20
th.symcd.com 3 23.42.11.27 3

ocsp.thawte.com 3 23.42.11.27 10
crl.thawte.com 2 23.42.5.163 900

ho7rcj6wucosa5bu.tor2web.org 1

194.150.168.70
38.229.70.4

65.112.221.20 3600

api.ipify.org 1

50.17.192.14
107.20.229.58
54.243.252.101 60

malwagroup.org 1 182.50.130.67 3600
thedirtydelicious.com 1 184.168.27.45 600

nerdmeetsgirl.com 1 184.168.47.225 600
tanhadhidown.ru 1
herssofhaprigh.ru 1
nohissandbo.ru 1
mcreport.org 1

Pony and Dyre banking malware. These six domains can be
combined used to create one IOC as they are only seen in
one sample.

One sample used the ho7rcj6wucosa5bu.tor2web.org and
api.ipify.org domains. As stated above, api.ipify.org, is
used to retrieve the IP address of an infected host and
ho7rcj6wucosa5bu.tor2web.org is a known malicious IP ad-
dress [27] [28] and is using the Tor2web network gateway15.
These two domains can be used to to create two indicators or
one combined indicator. The last domain, mcreport.org, was
not resolved and is only mentioned as the result of the analysis
of a malicious file on [29]. This domain seems to be out of
use at the moment, but can still be used to create an IOC.

Other than the domains themselves, the IP addresses that
were resolved can also be used in the generation of IOCs.
The resolved IP addresses may change, so this may not be as
effective as an IOC because it may not be relevant for long.

B. HTTP

Only three samples from the 50 that generated network
traffic utilised the HTTP protocol. This is a significantly small
amount of of samples and does not give too much to work with
in terms of IOC generation. Between the three samples, there
were nine HTTP requests and four ”200 OK” replies and four
”404 Not Found” replies and one did not receive a reply.

When looking at some of the HTTP header fields, it was
found that six out of the seven User-Agent fields did not
correspond to the programs and operating system. For example
one of the requests specified the Opera browser (not installed
on the VM) and another specified that it was running on
Ubuntu. The User-Agents are shown in Table II along with
the ID of the sample. Sample 4 used three different User-
Agents and so did Sample 48. It is interesting that every
HTTP request had a different User-Agent value. Sample 99
was the only sample to use a correct User-Agent field. In

15https://tor2web.org/

[19], which also found that malware forges their own User-
Agents, it was suggested that one sample can use different
User-Agent because of the modular nature of malware. Each
different module has its own way of forging an HTTP request.

Sample 4, mentioned in Table II, HTTP GET re-
quested three URIs. These were 70.127.18.124/online.htm,
178.137.58.176/main/htm and 94.139.196.46/home.htm. The
first URI did not receive a reply and the last two received a 404
Not Found reply. Sample 4 did not send any DNS requests,
so these addresses were not resolved from a domain name.

Sample 48, sent three unique HTTP GET requests to
IP addresses that had not been resolved from DNS re-
quests. The three requests were 79.119.76.125/online.htm ,
79.119.76.12/welcome.htm and 122.118.192.8/index.htm, the
last of which brings up a login page to a router. There is
most likely a compromised computer behind the router that is
part of the Dridex botnet. Since the previously mentioned IP
addresses had not been resolved from DNS requests it makes
them a good property to add to part of an indicator. Each of
the HTTP requests can be made into an HTTP Session CybOX
object, that can be wrapped by a STIX Indicator.

Sample 99 sent three HTTP GET requests seen in Figure 1.
These headers are very similar and show that the sample was
attempting to download a file called ’k1.exe’ from the three
domains. The headers have identical accept-language, accept-
encoding, accept, and user-agent values in the fields and two
of the headers have the same GET parameter. The malware
most likely sends three requests for the same file (assuming
it is the same file) in case one or more of the domains is
down. In the case of the sample run, the ‘nerdmeetsgirl.com’
request (shown in Figure 1a) received a HTTP/200 response.
For HTTP requests for ‘thedirtydelicious.com’ and ‘malwa-
group.org’, shown in Figures 1b and 1c, response codes were
received indicating that the files were no-longer present for
download.

From the four different HTTP requests all of them used the
GET request method. Rossow et al [19], analysed the network

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 81

TABLE II: HTTP User Agents and sample IDs

User Agent Sample ID
Mozilla/5.0 (Windows NT 5.1; rv:21.0) Gecko/20130401 Firefox/21.0 4
Mozilla/4.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/5.0) 4

Mozilla/5.0 (compatible; MSIE 9.0; AOL 9.7; AOLBuild 4343.19; Windows NT 6.1; WOW64; Trident/5.0; FunWebProducts) 4
Mozilla/5.0 (Windows NT 6.2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1464.0 Safari/537.36 48

Opera/9.80 (Windows NT 6.1; U; es-ES) Presto/2.9.181 Version/12.00 48
Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:21.0) Gecko/20130331 Firefox/21.0 48

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR
3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; GWX:QUALIFIED) 99

output of multiple types of malware samples, they also found
that GET request was the most popular request method over
POST.

(a) HTTP request to ’nerdmeetsgirl.com’

(b) HTTP request to ’thedirtydelicious.com’

(c) HTTP request to ’malwagroup.org’

Fig. 1: Three HTTP GET requests generated by
one of the samples

C. Other Protocols

In terms of TCP requests, 42 out of the 50 samples
that generated TCP traffic with 108 connections established
and 869 connections failing. The samples did not show any
malicious ICMP, UDP, FTP or SSH traffic.

VI. IOC GENERATION AND RESULTS

In this section we discuss how the IOCs were generated and
show an example of an IOC that was created. As stated above,
we used STIX for the creation of indicators and we generated
seven types of indicators, ICMP, TCP, UDP, SSH, FTP, DNS
and HTTP. Figure 2 shows the resulting flow of the system,
with IOCs and a final product and Intrusion Detection System
or firewall rules as a potential final product. As seen in the
image and stated previously, a malware sample is submitted
to the Cuckoo sandbox, which dynamically analyses its be-
haviour and records the network traffic to a PCAP file. The

Fig. 2: IOC analysis and creation flow diagram

TABLE III: Cybox fields used for each IOC

IOC type Network Properties
ICMP IPv4 address, Type
TCP IPv4 address, Port, TCP state
UDP IPv4 address, Port

HTTP

Method, URI, Version, Host, Port, Accept, Accept
language, Accept encoding, Authorization, Cache

control, Connection, Cookie, Content length,
Content type, Date, Proxy authorization

DNS IPv4 address, Port, Domain name, Type

FTP IPv4 address, Port, Request argument, Response
argument

SSH IPv4 address, Port, Public key

PCAP file is used by a custom processing module, which trims
it, as described in Section IV-C. A custom reporting module
then reads the new PCAP file and extracts useful values. Those
values are then used to generates STIX Indicators for the
specific protocols. The generation of the IOCs is discussed
in more detail below.

A. IOC generation

In order to generate each IOC we need the correct values for
each one. Table III shows the eight types of IOCs that were
created and the network properties that were used to create
them.

In order to generate the objects, we identified all the
necessary packets for each malware sample and extracted the

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 82

Fig. 3: STIX Indicator for a HTTP GET Request

properties shown in Table III. Next the python-cybox16 library
was used to create CybOX objects out of the extracted values.
These objects were then placed into STIX Indicators using the
python-stix17 library. The ID numbers of the STIX Indicators
were placed into a STIX Report and the Indicators and the
Report was finally wrapped by a STIX Package.

Part of a STIX Indicator that was created to represent a
HTTP GET request is shown in Figure 3. A STIX Indicator
can include a Title and Description which we used to describe
the IOC (not shown in the Figure). The layout of a CybOX
HTTP Session object is shown using the information from
the before mentioned, ’nerdmeetsgirl.com’ request shown in
Figure 1a. The Host, URI, Port, Protocols and more are
represented in Figure 3. CybOX objects have the useful trait
of including the creation date of an IOC. This IOC layout is
advantageous because it is simplistic as it does not contain too
much information. It also contains meta data which is useful
for sharing, so people can understand what the IOC is about.

Each malware sample ended up with an XML file containing
all the indicators that were created, which is the final product
of the system. These XML files can easily be shared manually
using the AlienVault OTX. AlienVault requires a STIX file to
be uploaded with the extension changed to ’.ioc’ from ’.xml’
before it is uploaded. MISP also allows for the upload and
sharing of STIX data. MISP is also useful because it allows
for the export of IOCs in different formats including Intrusion
Detection Systems (IDS) rules, OpenIOC, plain text, Snort
rules and Suricata rules.

16https://github.com/CybOXProject/python-cybox
17https://github.com/STIXProject/python-stix

VII. CONCLUSION

In this work, we presented a framework for the automatic
generation of Indicators of Compromise from a malware
sample. The Dridex malware strain was used as an example set
of malware for analysis and the samples genearted PCAP files
during dynamic analysis. An overview of the network traffic
for DNS and HTTP protocols was shown, which resulted in
some suspicious domain names, and HTTP request packets.
The information gathered from these suspicious packets was
used to generate the IOCs.

We can confirm that useful network-based IOCs can be
generated from dynamic malware analysis while avoiding the
legitimate background traffic originating from the sandbox
system. An example of one of the IOCs can be seen in Section
VI, and shows that the framework can create comprehensive
STIX Indicators. Since the system can take any malware as
an input, and uses PCAP files for the generation of Indicators,
any malware that generates traffic during dynamic analysis in
the sandbox used, will have a STIX file of IOCs generated.

The one downside of the system at the moment is that a
baseline network traffic test has to be run every so often, but
the method of filtering legitimate traffic from Cuckoo’s PCAP
file was very effective and lead us to create more accurate
IOCs instead of creating IOCs from legitimate traffic, which
would be troublesome. We believe that the framework, when
expanded, will be a useful and scalable tool for the creation
of all types of IOCs and could be used effectively in sharing
cyber threats. This will help in combating cyber treats, by
allowing the efficient generation of IOCs.

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 83

VIII. FUTURE WORK

Future research will be done with the aim of evaluating an
optimal (and possibly flexible) means of sharing this IOC data
in a way that it can be meaningfully utilised by others. This
information will be used to expand the system to automatically
share IOCs. Another useful expansion would be the creation of
Intrusion Detection System and firewall rules from the STIX
Indicators. This would allow for the data to be used as a
defence mechanism against malware.

REFERENCES

[1] D. W. Chris Johnson, Lee Badger, “Nist special publication 800-
150 (draft) guide to cyber threat information sharing (draft),”
October 2014. [Online]. Available: http://csrc.nist.gov/publications/
drafts/800-150/sp800 150 draft.pdf

[2] J. A. L. Denise E. Zheng. (2015, March) Cyber threat information
sharing recommendations for congress and the administration.
CSIS. [Online]. Available: http://csis.org/files/publication/150310
cyberthreatinfosharing.pdf

[3] C. Harrington, “Sharing indicators of compromise: An overview
of standards and formats,” Conference Presentation, November
2013. [Online]. Available: https://www.rsaconference.com/writable/
presentations/file upload/dsp-w25a.pdf

[4] US-CERT. (2015, October) Alert (TA15-286A) Dridex P2P Malware.
Online Article. US-CERT. [Accessed on: 23 October 2015]. [Online].
Available: https://www.us-cert.gov/ncas/alerts/TA15-286A

[5] D. Oktavianto and I. Muhardianto, Cuckoo Malware Analysis. Packt
Publishing Ltd, 2013.

[6] A. Provataki and V. Katos, “Differential malware forensics,” Digital
Investigation, vol. 10, no. 4, pp. 311–322, 2013.

[7] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in 2008 IEEE International Conference on Depend-
able Systems and Networks With FTCS and DCC (DSN). IEEE, 2008,
pp. 177–186.

[8] C. Geyer. (2015, July) Oasis advances automated cyber
threat intelligence sharing with stix, taxii, cybox.
Blog Post. OASIS. [Accessed on: 29 November
2015]. [Online]. Available: https://www.oasis-open.org/news/pr/
oasis-advances-automated-cyber-threat-intelligence-sharing-with-stix-taxii-cybox

[9] M. Sanghavi. (2015, March) DRIDEX and how to overcome it. Blog
Post. Symantec. [Accessed on: 23 October 2015]. [Online]. Available:
http://www.symantec.com/connect/blogs/dridex-and-how-overcome-it

[10] Trend Micro. (2015, October) FBI, Security Vendors
Partner for DRIDEX Takedown. Blog Post. Trend
Micro. [Accessed on: 23 October 2015]. [Online].
Available: http://blog.trendmicro.com/trendlabs-security-intelligence/
us-law-enforcement-takedown-dridex-botnet/

[11] D. Bisson. (2015, October) The Dridex botnet ain’t done yet,
say researchers. News Article. Graham Cluley. [Accessed on: 23
October 2015]. [Online]. Available: https://grahamcluley.com/2015/10/
dridex-botnet-dead/

[12] D. OBrien, “Dridex: Tidal waves of spam pushing dangerous
financial trojan,” Symantec, White Paper, February 2016.
[Online]. Available: http://www.symantec.com/content/en/us/enterprise/
media/security response/whitepapers/dridex-financial-trojan.pdf

[13] L. Frink. (2016, February) Dridex botnet distributor now serves avira.
Blog post. Avira. [Accessed on: 29 April 2016]. [Online]. Available:
http://blog.avira.com/dridex serves avira/

[14] S. News. (2016, March) Dridex botnet spreading locky ransomware
via javascript attachments. News Article. Security Week. [Accessed
on: 29 April 2016]. [Online]. Available: http://www.securityweek.com/
dridex-botnet-spreading-locky-ransomware-javascript-attachments

[15] Z. Zorz. (2016, May) Dridex botnet hacked, delivers dummy
file. Online Article. Help Net Security. [Accessed on: 6 May
2016]. [Online]. Available: https://www.helpnetsecurity.com/2016/05/
05/dridex-botnet-hacked/

[16] ——. (2016, February) Dridex botnet alive and well, now also spreading
ransomware. Online Article. Help Net Security. [Accessed on: 29 April
2016]. [Online]. Available: https://www.helpnetsecurity.com/2016/02/
17/dridex-botnet-alive-and-well-now-also-spreading-ransomware/

[17] MITRE. About STIX. The MITRE Corporation. [Online]. Available:
http://stixproject.github.io/about/

[18] (2015) ObservableTypeCYBOX CORE SCHEMA. MITRE. [Acessed
on: 1 November 2015]. [Online]. Available: http://stixproject.github.io/
data-model/1.2/cybox/ObservableType/

[19] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. Van Steen,
F. C. Freiling, and N. Pohlmann, “Sandnet: Network traffic analysis of
malicious software,” in Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security.
ACM, 2011, pp. 78–88.

[20] K. Fujiwara, A. Sato, and K. Yoshida, “Dns traffic analysiscdn and the
world ipv6 launch,” Information and Media Technologies, vol. 8, no. 3,
pp. 833–842, 2013.

[21] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and
detecting fast-flux service networks.” in NDSS, 2008.

[22] L. Teo, “Learning from the Dridex Malware - Adopting a
Effective Strategy,” SANS Institute, White Paper, October 2015.
[Online]. Available: https://www.sans.org/reading-room/whitepapers/
detection/learning-dridex-malware-adopting-effective-strategy-36397

[23] AplusWebMaster. (2015, July) ’Changed Identification Num-
bers’, ’Hilton Hotel’ SPAM, Zombie ’Orkut’ Phish
... Forum Post. Spybot. [Accessed on: 1 Novemeber
2015]. [Online]. Available: https://forums.spybot.info/showthread.php?
23632-SPAM-frauds-fakes-and-other-MALWARE-deliveries/page75

[24] B. Duncan. (2015) Upatre/Dyre - the daily grind
of botnet-based malspam. Forum Post. SANS ISC In-
foSec. [Accessed on: 1 November 2015]. [Online]. Avail-
able: https://isc.sans.edu/forums/diary/UpatreDyre%20the%20daily%
20grind%20of%20botnetbased%20malspam/19657/

[25] [Online]. Available: https://www.virustotal.com/en/domain/ocsp.thawte.
com/information/

[26] [Online]. Available: https://www.virustotal.com/en/file/
facc9a5f02e8d18c9cbac9ee760ffa38b2854e5d5c89a529e368be8857bc55a9/
analysis/

[27] B. Duncan. (2015, February) 2015-02-02 - malspam run pushes
chanitor - subject: Logmein promo code - get 50MALWARE-
TRAFFIC-ANALYSIS.NET. [Accessed on: 1 Novemeber 2015].
[Online]. Available: http://www.malware-traffic-analysis.net/2015/02/
02/index.html

[28] [Online]. Available: https://www.virustotal.com/en/domain/
ho7rcj6wucosa5bu.tor2web.org/information/

[29] [Online]. Available: https://malwr.com/analysis/
ZjJkMmJkNTk3YmUyNDliZWFkMDNiZmQ3MmQ1YjJkZGU/

978-1-5090-2473-8/16/$31.00 ©2016 IEEE 84

