
Building a Graphical Fuzzing Framework
Sascha Zeisberger

Dept. Computer Science
Rhodes University

Grahamstown, South Africa
Email: g07z3446@campus.ru.ac.za

Barry Irwin
Dept. Computer Science

Rhodes University
Grahamstown, South Africa

Email: b.irwin@ru.ac.za

Abstract—Fuzz testing is a robustness testing technique that
sends malformed data to an application’s input. This is to test
an application’s behaviour when presented with input beyond
its specification. The main difference between traditional testing
techniques and fuzz testing is that in most traditional techniques
an application is tested according to a specification and rated
on how well the application conforms to that specification. Fuzz
testing tests beyond the scope of a specification by intelligently
generating values that may be interpreted by an application in
an unintended manner. The use of fuzz testing has been more
prevalent in academic and security communities despite showing
success in production environments.

To measure the effectiveness of fuzz testing, an experiment
was conducted where several publicly available applications were
fuzzed. In some instances, fuzz testing was able to force an
application into an invalid state and it was concluded that
fuzz testing is a relevant testing technique that could assist in
developing more robust applications. This success prompted a
further investigation into fuzz testing in order to compile a list
of requirements that makes an effective fuzzer.

The aforementioned investigation assisted in the design of
a fuzz testing framework, the goal of which is to make the
process more accessible to users outside of an academic and
security environment. Design methodologies and justifications of
said framework are discussed, focusing on the graphical user
interface components as this aspect of the framework is used to
increase the usability of the framework.

Index Terms—Fuzzing, Application Testing, Frameworks

I. INTRODUCTION

FUZZ testing, colloquially know as fuzzing, is a robust-
ness testing technique that sends malformed data to

an application’s input [1]. It focuses on generating intelli-
gent values that extend beyond the scope of an application
for which developers may not have accommodated for and
possibly sending an application into an unknown state [2].
These unknown states commonly manifest as the application
crashing, and present a security risk as these crashes could
lead to the application becoming exploitable to some extent
[3]. Popular targets for undergoing fuzzing include applica-
tion arguments and files and network communications. It is
accepted that if an application accepts some form of input,
that input can be fuzzed. As an example, Mulliner and Miller
demonstrate that by fuzzing the SMS stack in several cellular
phone operating systems, they were able to find issues in
the respective platforms and were able to develop exploits in
several instances [3].

Fuzz testing has been shown to be effective in development
environments, more so when combined with other testing tools

[4]. Despite this fact, fuzzing has not become widely used
in commercial development environments and remains fairly
restricted to academic and security backgrounds. This paper
looks at the development of a fuzzing framework that aims
to simplify the fuzzing process in order to increase its use
in industry. Focus is put on fuzzing network applications
at the application layer, specifically targeting FTP and SIP.
This is to demonstrate that fuzz testing can be used in this
format to reveal flaws in network applications, explain the
process of fuzz testing in terms of the requirements before,
during and after a fuzz session, and explain the benefits and
shortcomings of fuzzing. This data is used to facilitate the
design of the customised fuzzing framework whose goal is
to simplify the process of fuzz testing and lower the learning
barrier to conduct fuzz tests. Section II of this paper provides
a short summary of the different aspects of fuzzing. Various
concepts that relate to fuzzers specifically are discussed,
focusing on the types of fuzzers, strategies of fuzzing and
data generation methods. Section III describes the process
of fuzzing two network protocols, providing summaries on
the protocols fuzzed, the fuzzers used in each scenario and
a short summary on the results from each fuzzing session.
Section IV uses the discussions from the previous two sec-
tions to propose a new fuzzing framework and motivate any
design decisions. Section V outlines several shortcomings of
the developed framework and proposes several requirements
that may improve the framework. Section VI concludes the
discussion and re-iterates the more important topics covered
in this paper.

II. FUZZING

Fuzz testing aims to reveal implementation flaws in an
application by sending malformed queries to the target applica-
tion. Most developers measure an application’s completeness
according to its ability to conform to a specification, usually
checking if an application accepts a set of correctly formatted
inputs and responds in the expected manner [2]. Fuzz testing
aims to test an application beyond this scope by generating
intelligent values, where an intelligent value is one that could
possibly be interpreted incorrectly by an application [1]. Intel-
ligent values vary depending on the fuzzer used and the metrics
selected by the developer of the fuzzer. Table I demonstrates
some of the possible metrics used in a fuzzing session, where
the “Expected Input” column shows what an application may
expect and the “Fuzzed Input” column shows what a fuzzer
may generate in its place.

Table I
FUZZING METRIC EXAMPLES

Example Expected Input Fuzzed Input

Repeating Delimiters user@domain.com user@@domain.com

Using border values 32 bit integer 2^32 + (-1 || +1)

Exceeding expected sizes Single character More than 1 or blank input

Incorrect types Integer Any non-integer type

Optimising the metrics to use in a fuzzer is important as this
can greatly reduce the number of test cases to be executed [1],
[5]. Amini and Portnoy emphasises this by demonstrating that
if one were to fuzz a single DWORD field in a standard testing
environment, it may take approximately 13 years to iterate
through all possibilities [6]. To add to this, most protocols
consist of more than one field and if we continue to fuzz test
a protocol using every single value we can think of, the test
becomes uneconomical to run. To streamline the process, we
assume that an application is more likely to fail at border
cases since, in terms of 32bit integers, an application will
likely respond the same to 5367, 5368 and 5369 and issues are
more likely to occur when using values around the maximum
32bit, 64bit, 128bit and higher integer ranges. There may be
exceptions where an application may specifically looking for
one of those values and that value will hence be missed by
the fuzzer, but it may not be economical to search for these
values depending on the context of the value.

Depending on the quality of the application being tested,
fuzzing may cause an application to behave in an unexpected
manner and possibly crash it, and it is these crashes that are
analysed and manipulated to force the application into an
exploitable state. These may manifest as integer and buffer
overflow attacks [7]. The goal of fuzz testing is to expose
these issues and depending on the motive of the tester, can
be beneficial for the application if it is used to expose and fix
bugs, or detrimental if the bugs are used to generate exploitable
code.

A. Fuzzer Types

Specialised Fuzzers: A specialised fuzzer is one that is
purposely built for a specific protocol. There is extensive
knowledge on the protocol coded into the application and the
fuzzer is aware of specific test-cases that commonly manifest
as vulnerabilities in target applications. The advantage of these
fuzzers is that they can extensively fuzz an application and
focus test cases to a much higher degree [8]. In addition to
this, these fuzzers are often deployed with user interfaces that
compliment the protocol, such as Infigo FTPStress [8] and
Voiper [9].

Fuzzing Frameworks: A fuzzer may not always be avail-
able, especially in instances where a user wants to test a
proprietary protocol. This is where generic fuzzing frame-
works become beneficial. Generic fuzzing frameworks do not
target a specific protocol, instead they provide some means of
compiling a protocol specification which they then use to fuzz
a protocol [10]. This potentially allows for any protocol to be
fuzzed, as long as a specification can be built. The benefit of
using a fuzzing framework is that it allows a user to build

a fuzzer as they need it, and provides a single method of
handling fuzz testing sessions across a large scope of protocols
[1]. On the other hand, a fuzzing framework relies on the initial
specification of the protocol in order to fuzz that protocol
correctly, and a mistake in the description could nullify the
effects of a fuzzing session [1]. Another disadvantage is the
time and complexity of creating the description of a protocol,
and even then some frameworks may not have all the necessary
requirements and capabilities for modeling every protocol
[11]. There are efforts to create fuzzing frameworks that learn
protocols autonomously, such as the Evolutionary Fuzzing
System [12]. These are however still relatively new and still
in development, and thus beyond the scope of this discussion.

Stateless vs Stateful Fuzzers: The ability of the fuzzer to
maintain and fuzz a protocol’s state can influence the type of
bugs found when fuzzing an application. A stateless fuzzer
works by manipulating the values in a message and can
only fuzz an initial transaction in sequence of transactions.
A stateful fuzzer is able to maintain a protocols state and
fuzz transactions in any part of a sequence [13]. In [2], the
researchers experimented the differences between fuzzing SIP
applications using stateless and stateful fuzzers. While several
of the target applications were susceptible to stateless fuzzers,
some of the applications appeared resilient to fuzzing until
a stateful fuzzer was used, where issues that would have
otherwise gone unnoticed manifested. This demonstrates the
importance of using multiple fuzzing strategies and applica-
tions when fuzzing a framework, as one fuzzer may cover
test-cases not available in another fuzzer.

B. Testing Strategies

The level of access to the target application also has
influence on the strategy of the fuzzing session. These are
usually categorised into three types [1]

Whitebox testing: In whitebox testing, the tester has full
access to the target application’s executable, the source code
and has knowledge of the underlying protocol. The benefit
of this approach is that a debugger may be attached to the
target executable, and the tester is knowledgeable as to what
features of the target are more likely to present faults. This
can greatly decrease the time it takes to conduct a fuzz test
as the generated test cases can be narrowed down. Also,
depending on the debugger, extensive reports on crashes may
be generated to assist the tester in fixing any issues found. A
potential drawback with this approach is that the tester could
potentially becomes too focused on testing for a specific flaw
and following a specific code path, and could miss less obvious
issues in other areas of the application [1]. This scenario is
most common in development environments where the source
code of an application is readily available.

Greybox testing: Greybox testing is similar to whitebox
testing, except the tester has no access to the application’s
source code. The user has access to the target application’s
executable and has some knowledge on the workings of the
protocol, but any additional information with regards to the
applications inner workings is attained through some other
means, such as reverse engineering the targets executable

[1]. The benefit of this scenario is that the tester makes no
assumptions as to the inner workings of an application and
cannot bias the tests toward a specific code path. However the
tester is forced to run more tests when compared to whitebox
testing as the tests can not be focused. As with the whitebox
test, a debugger may be attached to the target application to
assist in the fault detection. An example of this scenario is in
environments where an end user is evaluating an application,
such as an entity evaluating several SIP clients before deciding
on one to deploy.

Blackbox testing: In blackbox testing there is no access
to an application’s source code and access is limited to the
application’s input and output. There is knowledge on the
underlying protocol, but generally this test is conducted over a
remote interface, such as when evaluating a remote web server.
This forces the tester to use a large range of fuzzing metrics
to ensure that the maximum amount of issues are revealed.
The benefit of this approach is that the tester has the same
view of the target application as the end user, and any issues
found are likely to have been experienced by the end user at
some point [1]. This method also prevents the testing of any
unnecessary execution paths in the application as all the test
cases can be considered to be relevant [1]. The issue with this
approach is that testing can be much longer than the whitebox
and greybox testing approaches, as the test cases developed
by the fuzzer are more extensive and can not be focused.

For the purpose of this paper, focus is on the greybox and
blackbox approach. This is based on the assumption that the
user will always at minimum have some knowledge to the
underlying protocol used by an application, and that the user
will have some access to an application’s executable.

C. Data Generation
Generic fuzzing frameworks can be classified into two main

types depending on how they create the malformed queries:
Generation fuzzer: These generate the data used for fuzzing

using some sort specification. This specification contains in-
formation on the structure of the messages, a specification
on the fields within the messages and the sequences of the
protocol [14]. The heuristics for generating fuzzed values are
determined by the developer of the fuzzer where each variable
type will have a specific set of rules, where an integer will be
fuzzed differently to a string. Generation fuzzers will usually
have some abstract form of representing the data structure of a
protocol or format. Figure 1 shows an example of this type of
system used by the Sulley fuzzing framework [6]. The benefit
of generation fuzzers are that they are able to intelligently
determine how to fuzz values, but they are expensive to create
as the specification needs to be created [15].

Mutation fuzzer: Mutation fuzzers, instead of learning the
structure of a protocol or using a specification, manipulate a
valid sample of data on a set of heuristics. These generally
fuzz by randomly flipping bits, adding data and manipulating
the structure of the sample data [1]. The benefit of this system
over that of generation fuzzers is that there is little overhead in
setting up the fuzzer, however only trivial cases and protocols
are able to be fuzzed since many protocols have checksums
to prevent this type of manipulation [1].

s_initialize("HTTP VERBS POST")
s_static("POST / HTTP/1.1\r\n")
s_static("Content-Type: ")
s_string("application/x-www-form-urlencoded")
s_static("\r\n")
s_static("Content-Length: ")
s_size("post blob", format="ascii", signed=True,
fuzzable=True)
s_static("\r\n\r\n")

Figure 1. Sample of HTTP POST description using Sulley [6]

III. TESTING

In this section, the process of performing an actual fuzz test
is discussed. Two popular application-layer protocols in use on
the Internet were fuzz tested; the File Transfer Protocol (FTP)
and the Session Initiation Protocol (SIP). In each instance,
several server software implementations were chosen and were
then fuzzed using a fuzz testing application built for each
individual protocol. The purpose of this analysis is to reinforce
the relevance of fuzz testing in software development cycles
by testing post-production applications.

For the purpose of this experiment, postmortem debugging
is not conducted as the goal is to determine if an application
is susceptible to fuzz testing, as apposed to finding specific
test-cases that result in an exploitable state. To this end and
to test the quality of the fuzzers, only the functionality and
completeness of the fuzzers are tested, specifically mentioning
the benefits and shortcomings of each fuzzer. This approach
also provides an insight into the fuzzing process, and a list
of requirements is compiled detailing what components are
necessary for a successful fuzzing session.

A. FTP and SIP

The File Transfer Protocol (FTP) is a mature protocol
that is simple in structure. It is human readable, consisting
of keywords such as STOR (store), RETR (retrieve) and
CWD (change working directory), to facilitate the exchange
of data over a network [16]. Transactions usually consist of an
“Command” and “Variable” pair, such as “USER username”
to login a user called “username”. According to [16], FTP has
four objectives;

• “to promote sharing of files (computer programs and/or
data)”

• “to encourage indirect or implicit (via programs) use of
remote computers”

• “to shield a user from variations in file storage systems
among hosts”

• “to transfer data reliably and efficiently”
To simplify this definition, FTP is used to transfer files across
two devices using a single standard.

FTP was chosen as a target protocol due to its simplicity and
because of the availability of server and client implementations
available on the Internet. In every fuzzing session, the same
options were used in both the server applications and in the
fuzzing software to ensure consistent results.

SIP is a relatively new protocol when compared to FTP and
shares a commonality with FTP where it is human readable
using keywords such as INVITE and REGISTER to facilitate
communications between applications [16], [17]. SIP acts as
a signaling protocol between SIP servers and clients and
is usually coupled with other protocols, where it is most
commonly used to negotiate streams between these entities.
SIP was chosen as the second target as it is a stateful protocol
and more complicated that FTP in this regard.

At the time of writing this paper, the vendors of the server
applications have not been informed of any issues found as
a result of this experimentation. In this respect, the names of
the server applications will not be revealed at this time.

B. Fuzzers

To fuzz FTP, Infigo FTPStress [8] and Metasploit [18] was
chosen. Infigo FTPStress is a FTP fuzzing application that
provides a GUI to simplify the fuzzing process. At the time
of testing, it was able to cover 57 FTP commands and allows
a user to set default arguments for each of the commands [8].
Metasploit is a penetration testing software suite that consists
of a variety of tools, one of which is a simple FTP fuzzing
script [18]. Infigo FTPStress was chosen due to its extensive
coverage of FTP commands, and Metasploit was selected due
to its inclusion in the popular Metasploit suite.

Voiper is a fuzz testing application which uses the Sulley
fuzzing framework and focuses specifically on fuzzing the SIP
protocol [9]. Voiper uses Sulley to generate test cases and also
includes modified modules from Sulley that assist in network
and process monitoring, as well as fuzzer automation. Voiper
version 0.0.7 was selected as the primary fuzzer for the SIP
protocol as it was the most complete SIP fuzzer in terms of
scope. It covers the following SIP transactions:

• SIP INVITE
• SIP ACK
• SIP CANCEL
• SIP NOTIFY
• SIP SUBSCRIBE
• SIP REGISTER
• SIP request structure
• SDP over SIP

C. Results

Table II provides a summary of the results found from
the fuzzing session against FTP and SIP. FTP showed more
favourable results compared to SIP in terms of fuzz testing,
but it is assumed that this was because of FTP’s simplicity and
because two fuzzers were used as apposed to a single fuzzer
being used to target the SIP applications. By using multiple
fuzzers for FTP, a larger range of test-cases were able to be
covered and this possibly lead to the results being biased to
FTP.

FTP: Of the 8 FTP server suites tested, only three showed
no apparent issues when fuzzed with both Infigo FTPStress
and the fuzzing script in Metasploit. All of the remaining
five crashed with some sort of non-clean exit code, all with
some sort of long string with variations in the delimiters used.

Table II
SUMMARY OF FUZZING SESSIONS ON FTP AND SIP SERVERS

Servers Tested Fuzzers Used Faulted Servers
FTP 8 2 5
SIP 2 1 0

There was a unique error in one of the server applications
where Infigo FTPStress was able to cause the application to
access and delete files outside of the allowed location on the
hard disk. In three instances, the server applications showed
signs of memory leakage as memory usage would deviate from
approximately 70mb for normal usage, to 300mb after a fuzz
testing session.

Neither Infigo FTPStress nor the Metasploit FTP module
provided debugging facilities to automate the fuzzing process.
Because of this, whenever a crash occurred the server ap-
plication had to be manually restarted in order to continue
the fuzzing process. This created an overhead as the fuzzing
session would stop for a period of time before manual inter-
vention from the tester was required. This overhead extended
the time it took for the test to fully be concluded.

SIP: The fuzzing sessions against SIP did not yield any
notable results when using Voiper. From the discussion in
section II, this may be the result of Voiper not fuzzing the
states in a correct manner or Voiper may not have covered
enough test-cases to sufficiently test the server applications.
Alternatively, the SIP server software that was tested may have
been designed in such a way as to be resilient to this type of
attack.

The additional Sulley modules built into Voiper provided
a high level of automation that allowed a fuzz session to
be started and then be left unattended for the during of the
test. In addition to this, the process monitor was configured
to automatically restart the server application after a certain
amount of test cases as to limit the entropy from previous
tests.

D. Conclusion

The goal of fuzz testing is to test the robustness of a soft-
ware implementation and in several instances, the applications
showed no signs of crashes or unexpected behaviours. This is
not indicative of an application being fully immune to this type
of attack since, in the FTP fuzz testing sessions, it was shown
that it is possible for an application to have different effects
depending on the fuzzer used. This shows that different fuzzers
may have different heuristics when generating test cases, and
where one fuzzer may miss a crucial test case, another may
cover that case. Going by this conclusion, a different SIP
fuzzer may have produced different results and potentially
have resulted in a SIP server crashing.

Even with FTP being a mature protocol and relatively
simple to implement, there are still faulty implementations
being developed and deployed on the Internet. As shown here,
fuzzing can be used to reveal flaws in applications, even after
the development cycle.

IV. PROPOSED SOLUTION

Using the theory discussed in section II and the analysis
in section III, a prototype fuzzing framework has been de-
signed. The goal of this framework is to provide a simplified
method for designing protocols and managing generic fuzzing
frameworks, such as Peach, Spike and Sulley. In an attempt
to minimise errors during the grammar creation process, the
framework emphasises on providing a GUI that has some level
of affordance, lowering the barrier of entry for creating simple
fuzz tests. The framework is based on the Sulley Fuzzing
Framework as Sulley’s additional functionality beyond that
of the actual fuzzing process was found to assist the fuzzing
process, including in automating the fuzzing process. Addi-
tionally, its open source nature allows for modifications to be
done on the underlying framework to better suite the goal
of simplifying the fuzzing process. The framework’s main
goal is to provide a simplified method of fuzzing through an
intuitive User Interface using assistive tools and a high level
of automation.

A. Framework Structure

The framework is split into three parts; fuzzer manager,
protocol design, and an external client. The responsibility
of actually fuzzing a protocol and generating test-cases is
delegated to a backend framework, such as Peach [19], Spike
[20] or Sulley [6]. This has the advantage of relying on the
knowledge of researchers that are versed in fuzzing to create a
fuzzer, and the responsibility of the maintenance of the fuzzing
components is shifted to those researchers. In addition to this,
if one framework is unable to sufficiently fuzz a protocol or is
missing some feature that is required when fuzzing a specific
protocol, the backend may be switched to one that is better
suited to that protocol.

Figure 2. Structure of the Proposed Framework

B. Fuzzer Manager and Client

The fuzzer manager is responsible for selecting the protocol
to be fuzzed, controlling the fuzzing session and controlling
any additional modules that need to be run, such as the network
and process monitor. The fuzzer manager is further divided
into three subsections; a driver manager, a tool manager and
a download manager.

The conversion from the custom framework’s grammar to
another format is handled by a driver where each respective
framework, such as Sulley, Spike and Peach, has its own driver.
The purpose of this driver is to take the grammar generated
through the custom framework’s user interface and translate
it into a format that is readable for a selected framework.
The benefit of this is that each driver is loosely coupled with
the rest of the framework and a backend framework can be
added, modified or removed without affecting the rest of the
application.

The tool manager is responsible for controlling any addi-
tional features, for simplicity called modules, added to the
fuzzer manager. In Figure 3, it is responsible for adding the
“Process Monitor”, “Network Settings” and any other value
adding tabs to the interface. The purpose of the tool manager
is to create a single method for controlling any modules added
to the framework. It is referred to as the Tool API in Figure 2
since it is designed to behave in a similar fashion to a plugin
system, where different modules communicate with the fuzzer
manager using a single standard.

The framework has a client application that exists on the
target system. The purpose of the client application is to man-
age the target application and in a similar fashion to Sulley’s
process monitor, where it controls the target application. It is
also used to assist any modules in the fuzzer manager that
require some access to the target application.

There are two places that have been identified with the
potential to further decrease reliability of the fuzzing process;
the protocol design and the translation of the grammar done
by the driver. To curb this issue and to further simplify the
fuzzing process, a download manager is integrated into the
fuzzer manager. The purpose of this component is to promote
the sharing of pre-designed protocol designs developed using
the framework. This assists in collaboration of protocol design
where designers can evaluate and modify other designers work,
increasing the quality of the developed fuzzer. The design and
usage is based on the Package Manager application featured in
the Ubuntu Operating system and works on an HTTP backend.
Each protocol design is packaged with the following files:

• a protocol description containing transactions and field
formats

• a change log
• a control file, containing all the prerequisites of the fuzzer
• a readme

C. Block-based Protocol Design

The concept of block-based fuzzing, such as in Sulley and
Spike, has been taken literally and protocol design is done
using block graphics as show in Figure 4. The benefit of
this is that it makes the translation from the user interface
into a grammar that is recognisable by Sulley and Spike a
simple one, where each block in the User Interface represents
a line in the Sulley and Spike grammar. The interface has
been designed using the QT framework [21] due to its native
drag and drop system. The drag and drop functionality allows
for a quick method to modifying the protocol design which

Figure 3. Fuzzer Manager Prototype

Figure 4. Prototype of the graphical block-based protocol designer

becomes beneficial in environments where a specification of a
protocol is under constant revisement.

A packet is described on a field-by-field basis, similar to
Sulley and Spike. Every element in a protocol is described in
the order that it appears in the protocol, where it is qualified by
a series of additional options. In Sulley, as shown in Figure 1
when describing the block “s_size("post blob", format="ascii",
signed=True, fuzzable=True)”, the the field s_size is qualified
via a set of attributes. In the graphical protocol designer,
it is assumed that any field is most commonly featured as
a type, represented by a combo box, and a default value,
represented in the text edit box. Any other attributes are
assumed to be either used for a specific fuzzer or are used to
qualify the field. These become difficult to represent as each
backend framework may require a different set of options to
be specified. Therefore the “Set Options” button is coded to
display a table of “Option” and “Value” pairs, where the user
can specify what option has what value.

The final stage of protocol design is specifying the se-
quences of the transactions in a protocol. The graphical
framework differs from Sulley in this respect as the convention
in Sulley is to store the transactions in the same location as the
code that will initiate the fuzzing session, whereas the custom
framework stores all aspects of the protocol design in a single
file [6]. Figure 5 demonstrates that, from the fuzzers point of
view, there are two actors in the fuzzing session; the fuzzer
and the target. The user adds a transaction between the targets

by pressing the “+” button, where they are then given the
option of selecting the direction of the transaction. After this,
a combo box, showing all the packets designed in the block-
based designer, is displayed and the user selects a packet to
transmit. After the transmissions are designed and the protocol
design is complete, the user may save the design and the fuzzer
creates a text-based representation of the protocol. This text-
based representation is the description that will be used by the
drivers and converted into a format readable by the backend
frameworks.

Figure 5. Prototype of the sequence designer

V. LIMITATIONS AND FUTURE WORK

For the initial inception of the framework, the fuzzer driver
is compiled with the framework. This makes it difficult to
modify the framework when a major change occurs in a
backend fuzzing framework, such as a major new release for
Sulley. In addition to this the current plugin engine has an API
specification, but similar to the driver system, the plugins need
to be compiled with the application. A proper plugin system,
such as the one employed in the Firefox and Chrome Browsers,
will allow 3rd party developers to add additional functionality
and fuzzing drivers to the application without the need for the
custom fuzzing framework to be recompiled.

Further testing is required in ensuring that the User Interface
is sufficient enough for designing any network-based applica-
tion layer protocol. Both the protocols tested in this paper were
simple text-based protocols. There are efforts underway to test
a proprietary binary protocol in order to test the effectiveness
of the fuzzing framework.

In terms of protocol design, Sulley’s block-based approach
is able to design protocols beyond that of application layer net-
work protocols. The framework could potentially be modified
to allow for different mediums to be designed and fuzzed.

VI. CONCLUSION

Work done by [2] and [4], and the analysis in section III
shows that fuzzing can be an effective method for finding bugs
in applications. These bugs may manifest as exploitable code,
therefore it is in the best interest of the developers to fuzz
test their applications before deployment. Despite this, fuzz
testing is not very prevalent in development environments and

the assumption is made that the difficulty in conducting fuzz
tests deters developers from conducting these tests.

A fuzzing framework featuring a User Interface was de-
signed. The was to provide a single means of designing a large
variety of protocols, hence enforcing the philosophy of learn
once, use multiple times. It is believed that the framework will
allow for simple application-layer protocols to be designed
and tested in a simpler method when compared to traditional
fuzzing frameworks, although more complex protocols may
not be able to be sufficiently covered by the framework without
further testing and modifications.

REFERENCES

[1] P. Amini, A. Greene, and M. Sutton, Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 2007.

[2] H. J. Abdelnur, R. State, and O. Festor, “Kif: A stateful sip fuzzer,” in
IPTCOMM, New York USA, 2007.

[3] C. Mulliner and C. Miller, “Injecting sms messages into smart phones
for security analysis,” 2009.

[4] (2011, May) The trustworthy computing security development lifecycle.
[Online]. Available: http://msdn.microsoft.com/en-us/library/ms995349.
aspx

[5] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated whitebox fuzz
testing.” Network and Distributed System Security Symposium, 2008.

[6] P. Amini and A. Portnoy, Sulley: Fuzzing Framework, 2008.
[7] J. Seitz, Gray Hat Python. William Pollock, 2009.
[8] L. Juranic, “Using fuzzing to detect security vulnerabilities,” 2006.
[9] (2012, January) Voiper. [Online]. Available: http://voiper.sourceforge.

net/
[10] P. Amini and A. Portnoy, “Fuzzing frameworks,” in Blackhat, 2007.

[Online]. Available: http://www.blackhat.com/presentations/bh-usa-07/
Amini_and_Portnoy/Whitepaper/bh-usa-07-amini_and_portnoy-WP.pdf

[11] A. Takanen, J. Demott, and C. Miller, Fuzzing for Software Security
Testing and Quality Assurance. Artech House, Inc., 2008.

[12] J. Godinez and R. Mortam, “Evolutionary fuzzing system,” 2010.
[13] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and

G. Vigna, “Snooze: toward a stateful network protocol fuzzer,” 2007.
[14] C. Miller, “How smart is intelligent fuzzing -or- how stupid is dumb

fuzzing?” 2005.
[15] C. Miller and Z. N. J. Peterson, “Analysis of mutation and generation-

based fuzzing,” March 2007.
[16] J. Postel and J. Reynolds. (2012, April) File transfer protocol rfc.

Network Working Group. [Online]. Available: http://www.ietf.org/rfc/
rfc959.txt

[17] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, and K. Summers.
(2012, April) Session initiation protocol rfc. Network Working Group.
[Online]. Available: http://tools.ietf.org/rfc/rfc3665.txt

[18] (2011, June) Metasploit framework. [Online]. Available: http://www.
metasploit.com/

[19] (2012, April) Peach fuzzing platform. [Online]. Available: http:
//peachfuzzer.com/

[20] (2012, May) Spike fuzzer. [Online]. Available: http://immunityinc.com/
resources-freesoftware.shtml

[21] (2012, April) Qt cross-platform application and ui framework. Nokia.
[Online]. Available: http://qt.nokia.com/

http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://voiper.sourceforge.net/
http://voiper.sourceforge.net/
http://www.blackhat.com/presentations/bh-usa-07/Amini_and_Portnoy/Whitepaper/bh-usa-07-amini_and_portnoy-WP.pdf
http://www.blackhat.com/presentations/bh-usa-07/Amini_and_Portnoy/Whitepaper/bh-usa-07-amini_and_portnoy-WP.pdf
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc959.txt
http://tools.ietf.org/rfc/rfc3665.txt
http://www.metasploit.com/
http://www.metasploit.com/
http://peachfuzzer.com/
http://peachfuzzer.com/
http://immunityinc.com/resources-freesoftware.shtml
http://immunityinc.com/resources-freesoftware.shtml
http://qt.nokia.com/

	I Introduction
	II Fuzzing
	II-A Fuzzer Types
	II-B Testing Strategies
	II-C Data Generation

	III Testing
	III-A FTP and SIP
	III-B Fuzzers
	III-C Results
	III-D Conclusion

	IV Proposed Solution
	IV-A Framework Structure
	IV-B Fuzzer Manager and Client
	IV-C Block-based Protocol Design

	V Limitations and Future Work
	VI Conclusion
	References

