
An Analysis and Implementation of Methods for
High Speed Lexical Classification of Malicious

URLs
Shaun Egan

Dept. Computer Science
Rhodes University

Grahamstown, South Africa
Email: g10e4008@campus.ru.ac.zal

Barry Irwin
Dept. Computer Science

Rhodes University
Grahamstown, South Africa

Email: b.irwin@ru.ac.za

Abstract—Several authors have put forward methods of using
Artificial Neural Networks (ANN) to classify URLs as malicious
or benign by using lexical features of those URLs. These methods
have been compared to other methods of classification, such as
blacklisting and spam filtering, and have been found to be as
accurate. Early attempts proved to be as highly accurate. Fully
featured classifications use lexical features as well as lookups
to classify URLs and include (but are not limited to) blacklists,
spam filters and reputation services. These classifiers are based
on the Online Perceptron Model, using a single neuron as
a linear combiner and used lexical features that rely on the
presence (or lack thereof) of words belonging to a bag-of-words.
Several obfuscation resistant features are also used to increase the
positive classification rate of these perceptrons. Examples of these
include URL length, number of directory traversals and length
of arguments passed to the file within the URL. In this paper
we describe how we implement the online perceptron model and
methods that we used to try to increase the accuracy of this model
through the use of hidden layers and training cost validation. We
discuss our results in relation to those of other papers, as well
as other analysis performed on the training data and the neural
networks themselves to best understand why they are so effective.
Also described will be the proposed model for developing these
Neural Networks, how to implement them in the real world
through the use of browser extensions, proxy plugins and spam
filters for mail servers, and our current implementation. Finally,
work that is still in progress will be described. This work includes
other methods of increasing accuracy through the use of modern
training techniques and testing in a real world environment.

Index terms: Frameworks, Phishing, Malicious URLs, Clas-
sifiers

I. INTRODUCTION

As shown in Aaron and Rasmussen [1], the number of
unique phishing and malicious URLs have dropped in the
period of the first half and second half of 2011. While these
statistics would appear to indicate a decline in these kinds of
attacks, they continue to indicate the large volume of phishing
attacks that occur every month, with a total of 83083 attacks
recorded for the second half of 2011 [1]. In the first half of
2011, the month of March had 26402 phishing attacks reported
to the Anti Phishing Work Group alone [2], accounting for
18.81% of the total for the first half of the year. Phishing in
general, consists of several different categories, all of which

an attacker will send a message containing a URL, often by
email, to a website that is intended to mislead the user into
thinking that it originates from a legitimate source and the
visited site is legitimate. The goal of this is to trick the user
into entering private data such as credit card details which are
then stolen. The complexity of these attacks can range from
simple messages to high fidelity web sites that are made to
look like the legitimate service.

The focus of this paper is primarily on detecting (and
mitigating the threat from) phishing attacks of their various
forms, namely phishing and targeted phishing (spear phishing).
However, the research may apply directly to other kinds of
malicious web addresses where the URL may be used to
identify intent other than what is indicated such as sites hosting
drive-by downloads where users unknowingly install malware
[3]. Section II describes methods in which attackers try to
mask the intentions of their website in terms of the URL that
is used. Current Methodologies, section III discusses related
work and the the contemporary approach to mitigating threats
from phishing attacks. In the section IV, we discuss solutions
proposed by other authors and how we intend to implement
them using the Normandy framework discussed in section
VII. Section V describes some geolocation research that was
performed on the malicious training data and offers some
explanations for the results. Section VI describes the basic
operation of an Online Perceptron, our implementation of the
Online Perceptron model, its strengths and problems, as well
as suggesting modifications for improvement of this model.
Section VII describes the framework currently being built to
automate the process of data collection, network training and
distribution of these networks to clients on any platform. It will
also discuss the benefits of such a platform. Finally, section
VIII highlights the conclusions made in this paper.

II. OBFUSCATION

Obfuscation, in the context of phishing, is the method
where by attackers try to mask the intent of the website by
creating a URL that appears to be legitimate or hide the
destination completely from the end user. These URLs try



to deceive the user as well as hide the intent of the URL
from automated detection, attempting to cause them to enter
confidential information used for logging into a service, or
causing the user to enter credit card details using fraudulent
sales mechanisms. This is done by using one or more of
several approaches. These range from miss-spelling parts of
the URL, replacing the domain with an IP address or using a
port number.

Miss-spelled domains are effective at a glance, but many
users may detect them if they read the URL carefully. IP
addresses are used in replacement of a domain, and hide the
destinations intent completely and may generally be viewed
as malicious. Port numbers are well hidden in a URL as they
may be used on a benign websites address. This may move
the user to a completely separate webserver or website. These
obfuscation methods are outlined in more detail in Egan et al
[4], Egan et al [5] and in Ma et al [3].

Often, security professionals and aware users are able to
spot, often at a glance, malicious URLs before following them.
The URL may not have any specific feature that definitively
identifies it as malicious, but several contributing factors. This
is justification for creating a classifier that may be trained to
identify these URLs using artificial intelligence.

III. CURRENT METHODOLOGIES

There are two main approaches to detecting malicious
websites, focussed on detecting the nature of the address
before or after following the link. The method following the
latter approach is to use a content scanner, which downloads
the webpage and analyses the data and classifies it from there.
The primary problem for this approach is that it requires the
user to download content before it can be classified, at which
point the damage may have already been done in terms of
malware already installed.

A. Modern Approaches

Several methods exist for detecting malicious websites
without having to follow the URL. These methods include
blacklists, spam filters and reputation services. Each of these
are described in detail in Egan et al [4]. Blacklists can be very
accurate, some with manually vetted input, and are a highly
reliable source of information used to determine whether a
URL points to malicious content. They suffer from being
unable to adapt quickly. If no user has previously visited the
phishing site, it may not have been reported to blacklisting
services or may still be in a queue of URLs still to be vetted.
Blacklists require the client side to perform a lookup each
time a URL is visited, and in a South African context, this
may be very slow with network latencies and also has a small
impact on bandwidth. This adds to latency already required to
fetch the webpage which lowers the useability of a blacklist
implementation.

Spam filters are used within email servers to try and
detect spam by using a series of heuristics. While these are
relatively effective, without constant updating they quickly
become irrelevant as obfuscation trends change and generally

apply heuristic rules to the content of emails, rather than
identifying URLs specifically. They are largely ineffective at
detecting URLs without the use of a blacklist and will often
employ a blacklist to mitigate this. As a result they tend to
inherit the shortfalls of blacklists, although not useability since
filtering can be done before the end user requests mail. A
third approach used today are collectively called Reputation
Services. These are offered by many security companies and
create rating images next to any links displayed in search
results. This works by having users rate websites as they use
them. While this approach is useful in theory, it will only work
for large sites which have large numbers of users. Smaller,
but still legitimate, sites will have no rating and users will be
unable to tell whether they are benign or malicious.

IV. PROPOSED SOLUTION

Using the shortfalls of current techniques described above,
the following criteria are set for the next generation of mali-
cious intent classifiers:
• Speed - Little or no perceptible overhead should be added

to the user experience, achieving transparency until the
user needs to be notified.

• Accuracy - An accuracy comparable to current methods
of classification should be achieved.

• Adaptability - The solution should not be effected by
changing trends or new sites that have not been previously
visited.

• Automation - A completely automated system removes
human error and keeps classification method up to date.

Le and Ma[6], [3] proposed Artificial Neural Networks
(ANNs) as a method of classifying malicious URLs. As is
shown later in this paper, ANNs within the proper framework
meet all of these criteria. They improve adaptability as they
classify URLs with insight rather than simply checking if a
URL appears in a database. Usability is also improved as
classification can be done on the client side in a lightweight
fashion. This eliminates the need for lookups which add
latency and is deployable in a number of ways:
• Browser plugin for single user or personal applications
• Proxy plugin for large institutions where a browser plugin

may not be feasible
• Mail server plugin for detecting incoming attacks via

email

V. ANALYSIS OF PHISHING DATA

As part of the data gathering done for this research, Phish-
tank [7] was used as the primary source of malicious URLs
used for training data. The site Phishtank is a manually vetted
blacklist whereby people may submit URLs. A total of 13867
malicious URLs we collected over a period of two weeks on
which the following analysis was performed.

Firstly, each of the URLs was geolocated where possible
using the MaxMind GeoLocation Library available from [8].
The number of hosts that were successfully located is 12084.
The figure 1 shows unique locations of phishing hosts found



within the data. Note that this was performed without follow-
ing redirects due to limitations in the API that was used.

Figure 1. Unique locations of phishing hosts.

This data was then used to find countries in which these
hosts reside and a heatmap was generated and is shown in
figure 2.

Figure 2. Heatmap showing population density of phishing hosts per country.

This heatmap shows an overwhelming portion of the hosts
are found in the United States which may be due to its
perceived wealthy economy or the advanced nature of e-
commerce within its economy. This bias may also be due to
the fact that Phishtank has predominately English speaking
users. For a clearer image as to the rest of the data, figure 3
is shown without the United States input data.

Figure 3. Heatmap showing population density of phishing hosts per country
excluding US data.

Figure 3 gives a much clearer view of the population density
of phishing hosts per country. It is interesting to note that
not only first world countries have high densities of phishing
hosts. This may be a combination of factors. Countries with
lower technical expertise may suffer from higher numbers of
compromised hosts, inflating their numbers. The sheer volume
of hosts available in first world countries may contribute to the
high densities of compromised hosts within those countries.

The countries with the six highest population densities are
shown below.

Country # of hosts % of total
United States 5334 0.44
Brazil 1254 0.10
Australia 524 0.04
Netherland 508 0.04
Germany 490 0.04
United Kingdom 390 0.03

The table shows the six highest population densities for
phishing hosts by country. Again it seems to indicate that first
world economies have the highest rate of phishing hosts in
the context of the [7] training data, with the United States
accounting for 44

VI. NEURAL NETWORKS

In both Ma et al [3] and Le et al [6] the proposed method
of learning to identify malicious URLs is to use Artificial
Neural Networks with varying degrees of complexity. These
neural networks can be trained as classifiers to identify ma-
licious URLs if given the correct inputs and training data.
Neural networks are a mathematical model that try to mimic
the way the human brain works by modelling neurons and
interconnecting synapses. These may have a single hidden
layer of a single neuron, such as the perceptron model, or
multiple hidden layers with many neurons per layer. Both
papers, however, suggest using the perceptron model as the
base for the classification method.

A. Perceptron Model

The perceptron model has two observable layers. The first
has many nodes, called inputs. These nodes represent the input
data to the neural network. The second layer has a single
neuron and is connected to the input layer by a series of
weighted synapses. These weights are randomly initialised.
Another important element is the threshold or bias applied to
the neuron and its purpose is discussed in a later section and
is also randomly initialised.

The figure 4 shows the logical layout of a basic perceptron,
including the input layer, connecting synapses and the neuron
within the hidden layer.

In our implementation, the perceptron is created using
17336 inputs. The majority of these are made up by a bagof-
words created from the malicious and benign training data. The
URLs in this training data are kept separate and are broken
to find unique words within the URLs. Words are considered
unique within the portion of the URL they are found. URLs are



Figure 4. Basic Layout of a perceptron

broken down into domain, path, file and arguments sections of
the URL. Each of these words, from both benign and malicious
lists, are used as binary inputs into the neural network. In
addition, there are several lexical features which are also used
as inputs to the neural network and act as obfuscation resistant
metrics.

The synapses are all randomly initialised to a value within
the range of -0.5 to 0.5. The bias for the neuron is initialised
using the same method. This sets the network into a random
state which helps in the learning process.

1) Data sources: The first step in generating a perceptron
model is to gather the training and testing data required. The
malicious data that we used was sourced from Phishtank, while
the benign data was sourced from Open Directory [9].

2) Pre Training Formatting: In addition to the bag of words
used as input, 20 obfuscation resistant lexical features are also
used as inputs. These inputs include, but are not limited to, the
length of the URL, number of arguments passed, number of
directory traversals as well as the length of the domain name.
Each of these inputs are normalised to a range of 0 to 1. The
value 0 represents the length of the shortest value seen within
the training data, while 1 represents the largest value seen
within the same data, for both malicious and benign training
data.

Some features may simply not be present in a URL to be
analysed by the classifier and would also result in a 0 value
for the normalised data. For this reason, for each obfuscation
resistant lexical field, a second input is created that has the
value 0 to indicate that a feature was not present, or a 1 to
represent that a feature was present and is simply the same
value as the shortest encountered. If values are encountered
that are smaller than this smallest value they are adjusted to
the value 0, while larger values will be adjusted to the value 1
so as to not over compensate for those inputs. For this reason,
training data needs to be fairly large to keep the likelihood of
this scenario occurring low.

B. Feed forward mechanism

The feed forward mechanism is the process by which a
URL is classified. Each of the inputs are represented as either
binary values, or as floating point values from 0 to 1. Each
of these values are then multiplied by the associated synapse
wieght and then combined using a sum of all these inputs.
This is represented by equation 1 and is known as a Linear
Combination.

Linear Combination =

n∑
i=1

xiwi (1)

The result is then compared to the bias or threshold for the
neuron in the hidden layer. The output of the network is then
given by this comparison.

f (x) =

{
1 if x · w + b > 0
0 if x · w + b ≤ 0

}
(2)

Equation 2 shows this process where f(x) represents the output
of the classifier. In normal operation, this output is considered
the classification and in our implementation 0 represents a
benign URL, while an output of 1 represents a malicious URL.

C. Training

Since the network is initialised using random values, it
does not represent any knowledge when it is created. Neural
networks are a model that allow themselves to be trained using
training data where the correct classification for each input
is known before the network performs a classification. The
basic method is to use as many examples of both positive
and negative classification inputs as possible as training data.
Each example is then classified by the network, compared
to the expected result and a correction is given back to the
neural network which then makes small adjustments to the
synapses and thresholds. This is done repeatedly until the
classifier achieves a satisfactory level of accuracy, which may
be determined by a measure of error.

There are several methods of training the perceptron. The
method implemented is the Online Perceptron Learning algo-
rithm. Firstly, a URL from the training data is classified using
the newly initialized perceptron. The first step in training is to
calculate the error, given in equation 3.

γ = Yd − Y (3)

The error (γ) is calculated by subtracting the output of the
classifier Y from the desired output Yd defined by the source
of the original URL (malicious or benign).

Once the error has been calculated, a weight adjustment is
then calculated for each of the synapses using equation 4.

∆w = α× xi × γ (4)

In equation 4 ∆w represents the weight adjustment. This
value is added to the current value of the synapses given in
equation 5.

wt+1 = wt + ∆w (5)



Once the adjustments have been made, the process is re-
peated with the next URL in the training set. This process will
be repeated until a threshold is reached, usually an acceptable
level of accuracy. Le and Ma [6], [3] achieved an accuracy
level of 94% while using this method of training. In our own
test, the same accuracy was achieved in 30 iterations over the
training data set and confirmed with a separate data set of
testing data.

D. Improvements

The first method of training a perceptron that tried to
mitigate the problems associated with the Online Perceptron
trianing method is known as Confidence Weighted (CW)
training. As already mentioned, CW maintains a confidence
in each feature through the use of a covariance matrix Σ and
a mean value of all the input weights µ. In this notation,
Σi represents the confidence in feature i from the covariance
matrix, while µi represents the mean value for the input i
from within the µ vector. The actual classification of a URL is
performed in the same way as previously mentioned, that is, by
multiplying input values by their respective input weights and
through a step activation function. When training is performed,
the method shown in equation 6 is used.

(µt+1,Σt+1) = arg min
µΣ

DKL(N (µ,Σ)‖N (µt,Σt)), (6)

s.t.Prw∼N (µ,Σ)[yt(w · xt] ≥ η (7)

In [6] the authors achieved an accuracy of 96% when training
the classifier to identify phishing websites.

The second approach uses a method called Adaptive Regu-
larization of Weights (AROW) and builds on the CW method
of training. It has a higher tolerance for noisy input data than
CW and may also train on correct classifications owing to the
ability to update confidence in input features and is represented
by equation 8.

(µt+1,Σt+1) = arg min
µΣ

DKL(N (µ,Σ)‖N (µt,Σt)) (8)

+λ1lh2(yt, µ · xt) + λxTt Σxt, (9)
s.t.Prw∼N (µ,Σ)[yt(w · xt] ≥ η (10)

When this method of updating the input weights of the
classifier, Le [6] shows that an overall accuracy of 97% was
achieved, making the classifier as accuract as a fully featured
classification (a classification that uses lexical features of the
network as well as addition information gathered by look ups
such as WHOIS information).

E. Future Improvements

A method of increasing the output accuracy of the network
is to use Cross Validation, which uses a second, independent,
data set to validate training progress without impacting the
structure of the weighting of the neural network. This is done
because a network will start to optimize itself to the data
set on which is trained rather than the real world optimal
solution [10]. A second technique that is to be implemented
and tested is how the use of an second intermediate hidden

layer of varying sizes may impact the accuracy of the network,
by allowing the network to handle non linearly separable
dependencies between features.

VII. NORMANDY

The Normandy framework comprises of several individual
parts that automates the process of the providing up-to-date
networks for any application of the Perceptron Model as a
solution for malicious URL detection. It specifically targets
browser extensions and other plugins that have the ability to
do online retrieval of new networks on a regular basis. The
advantage of using these neural networks is that only a simple
descriptor of the neural network, as well as a list of words, be
required for a full update, resulting in very small updates. Also,
the nature of neural networks means that these updates need to
be executed infrequently, and a weekly update schedule has
been decided upon to facilitate rapid response to any trend
shifts in malicious URL creation. The framework is written in
Python but is implemented primarily for use on a Linux server.
A general overview of Normandy is displayed in figure 5.

Figure 5. Overview of Normandy

A. Scheduler

Scheduler is the top level component within the framework.
It has been deamonized to allow it to run as a background pro-
cess on a server, accepting system signals to force operations
such as exit. Scheduler’s primary purpose is to organise and
run other components of the framework in the correct order
and at specific times. It has been built using the Observer de-
sign pattern to allow for fairly complex execution orders. This
allows scheduler to execute other framework components, in
the form of observers, at specific times or after specific events.
An example of this is that once the gatherer and formatter
have executed, both the analyser and Network trainer may
be executed concurrently. It also has the advantage of making
further complex scheduled events simple to implement in the



form of observers by simply inheriting properties and methods
from the Observer class, stored in a specific folder and adding
the observer to a configuration file.

B. Gatherer

The Gatherer observer is set to run twice daily (twelve
hourly) and its primary purpose is to gather training data
in the form of malicious and benign URLs. At the time of
writing, the primary source of malicious data is gathered from
Phishtank[7]. This is implemented through the use of a class
that acts as a definition of a standard interface for data source
retrieves. This class is called DataSource and has a single
method called fetchData() which must be implemented by all
child classes. These classes must exist in a folder and are
enabled and disabled by use of a configuration file. Every new
data source has its own implementation of a DataSource due
to the different APIs required by each source, as well as the
different formats in which data is returned. Each DataSource
object will do preliminary formatting that converts the data
into raw URLs and timestamps. This data is then stored in the
preformatted table in a MySQL database.

C. Formatter

While each DataSource has functionality to format the data
it retrieves, this is not the final formatting that the URL
will receive. The Formatter observer runs after the Gatherer
completes. It uses the data stored in the preformatted table
and serves as a final formatting step, converting the formatting
to one which can be used by the Analyser and the Network
Trainer observers. This approach to formatting also allows
the final format of the URLs to be changed without having to
refactor each DataSource implementation.

D. Analyser

The Analyser observer is of secondary importance in terms
of the Normandy framework. Its purpose it to resolve do-
main names to IP addresses. This is done so as to perform
geolocation on these IP addresses in several different forms,
each of which require an IP address to operate so as to avoid
repeated lookups of the same domain. This geolocation is
a subclass of the AnalyserTask class, the purpose of which
is to allow for interesting metrics to be implemented easily
and run on new data every time it is fetched. Like the
DataSource classes, these AnalyserTasks are loaded into an
array when configured to do so from a configuration file. The
framework is simply sent a SIGHUP signal which causes it to
reload its configuration files. This allows a developer to build
functionality into the framework without having to restart it.

E. Network Trainer

Once the Formatter has completed its tasks, the Network
Trainer will initialize itself by fetching training data from the
database. The data has been formatted into the structure which
the Network Trainer may use to begin training. Its responsibil-
ity is to use the new data to create new neural networks which
will incorporate features which may not have been observed

in the wild already. Once an acceptable level of accuracy has
been achieved, the network is serialized into JSON format
and stored in the database. The Network Trainer has been
written to be as generic as possible, using subclassable classes
that allow developers to implement new methods of training
or activating the network without modification of Normandy
itself.

F. Publisher

The final Observer, at the time of writing, is the publisher. It
has the job of taking the JSON neural network descriptor and
the bag of words and compressing them into a zip format.
It then pushes these to the database of a webservice which
may be used by client side implementations. These clients
simply query the webservice and download a new version of
the neural network once a week. They may then decompress
the zip file and replace their current neural network description
and bag-of-words used to break up URLs that they encounter.
This is a useful approach as it is platform and implementation
independent as it only contains a list of words and a list of
input weights.

VIII. CONCLUSION

The authors of Ma et al [3] and Le et al [6] have shown
how lexical elements alone can be used to train classifiers to
an accuracy that makes them a viable solution to contemporary
methods such as blacklists. In our own tests we have validated
this by creating an Online Perceptron that is trained using the
same lexical features and similar training data. In addition to
this we have designed and implemented a framework which
automates the process of data gathering and network training,
providing a means of keeping clients up to date with current
trends in URL obfuscation methods.

Future research will focus around using statistical analysis
in the form of another perceptron model to determine if a
domain name has been algorithmically generated. This will
be combined with classifiers designed to detect both phishing
and malicious URLs and a top level classifier to determine
the weighting of each of these inputs. Additionally this will
provide a graduated estimation of the intent of a URL based on
all three classifiers. Also, statistical analysis will be performed
on the training data to try to determine if there are other
possible heuristics that could be used to try to increase the
accuracy of the classifier.

REFERENCES

[1] G. Aaron and R. Rasmussen. (2012, April) Global phishing
survey: Trends and domain name use in 2h2012. Anti
Phishing Work Group. http://www.antiphishing.org. [Online]. Available:
http://www.antiphishing.org/reports/APWG GlobalPhishingSurvey 2H2011.pdf;
Last accessed: 06/05/2012

[2] (2012, April) Phishing activity trends report 1st half
2011. Anti Phishing Work Group. [Online]. Available:
http://www.antiphishing.org/reports/apwg trends report h1 2011.pdf ;
Last accessed: 06/05/2012

[3] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
Learning to detect malicious web sites from suspicious urls,” in Pro-
ceedings of theSIGKDD Conference. Paris,France, 2009.



[4] S. Egan and D. B. Irwin, “An evaluation of lightweight classification
methods for identifying malicious urls,” in Internet Security South
Africa, 2011.

[5] S. Egan and B. Irwin, “High speed classification of malicious urls,”
2011.

[6] A. Le, A. Markopoulou, and M. Faloutsos, “Phishdef: Url names say it
all,” September 2010.

[7] Phishtank. [Online]. Available: http://www.phishtank.com/; Last
accessed: 27/04/2011

[8] Maxmind geoip api. [Online]. Available:
http://www.maxmind.com/app/api; Last accessed: 11/05/2011

[9] Open directory. [Online]. Available: http://www.dmoz.org/; Last
accessed: 11/05/2011

[10] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection.” Morgan Kaufmann, 1995, pp. 1137–
1143.


