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Abstract—Botnets consist of thousands of hosts infected with
malware. Botnet owners communicate with these hosts using
Command and Control (C2) servers. These C2 servers are
usually infected hosts which the botnet owners do not have
physical access to. For this reason botnets can be shut down
by taking over or blocking the C2 servers. Botnet owners have
employed numerous shutdown avoidance techniques. One of
these techniques, DNS Fast-Flux, relies on rapidly changing
address records. The addresses returned by the Fast-Flux DNS
servers consist of geographically widely distributed hosts. The
distributed nature of Fast-Flux botnets differs from legitimate
domains, which tend to have geographically clustered server
locations. This paper examines the use of spatial autocorrelation
techniques based on the geographic distribution of domain
servers to detect Fast-Flux domains. Moran’s I and Geary’s C are
used to produce classifiers using multiple geographic co-ordinate
systems to produce efficient and accurate results. It is shown how
Fast-Flux domains can be detected reliably while only a small
percentage of false positives are produced.

Index Terms—Botnets, Fast-Flux, Spatial Statistics

I. INTRODUCTION

The connected nature of the modern Internet has led to a
variety of computing devices from all over the world being
present and active on the Internet. These devices are used by
both legitimate users as well as malicious users of the internet.
Many devices on the network are susceptible to infection
by malicious programs known as malware. Malware allows
malicious individuals to remotely control computing devices,
and perform criminal activities such as sending spam, Denial
of Service attacks and phishing. A large collection of these
infected computing devices are known as a botnet. Botnets
are controlled by malicious users through a central server
architecture, using Command and Control (C2) servers. At the
time of writing the ShadowServer organisation was tracking
1650 botnets, each containing an average of 150,000 infected
hosts [1].

To prevent the C2 servers from being easily shut down,
and with them the botnet, botnet controllers rely on different
techniques. One of these techniques is known as Fast-Flux.
Fast-Flux relies on the Domain Name System (DNS), which
maps domain names to numeric IP addresses. Domains using
Fast-Flux return multiple rapidly changing IP addresses for
C2 servers with each DNS query response. These servers

normally consist of compromised hosts that are under the
control of the botnet owners. The infected hosts range from
home computer systems to corporate computer networks, and
are located world-wide [2]. The distributed nature of these
C2 servers differ from legitimate domain servers. Legitimate
domain servers under the control of organisations are usually
located in a central geographic locations or closely clustered
in distributed cases. Furthermore, legitimate domains such as
Content Distribution Networks, that do use geographically
distributed servers display a degree of geographic intelligence,
where users are directed to servers that are geographically
close to them [3]. This distinguishing factor allows for the
differentiation between legitimate DNS domain entries and
Fast-Flux domain entries. Classifiers based on animal and
plant dispersion statistics allow for the accurate differentiation
between legitimate and Fast-Flux domains. The classifiers
produced are both accurate and lightweight, with no additional
network traffic being generated and no time delay between a
domain being seen for the first time and its classification.

The paper discusses related work in Section II. The datasets
used are described in Section III. The geographic distribution
of Fast-Flux C2 servers is discussed along with geographic
co-ordinate systems in Section IV. Spatial autocorrelation
and subsequent classification models used are detailed and
discussed in Section V. The results obtained from testing
sample traffic are presented in Section VI. These results are
discussed and classifier performance outlined in Section VII,
with concluding remarks in Section VIII.

II. RELATED WORK

The distributed nature of botnet C2’s is a well established
fact and numerous researchers have attempted detection and
classification of botnets using the geographic locations of
botnet nodes [2], [3], [4]. In [4] Huang, Mao and Lee pro-
posed a method for delay-free detection of Fast-Flux service
networks. The solution relied on spatial distribution estimation
and spatial service relationship evaluation. Timezones were
used to distinguish between different geographic system spaces
and was combined with information entropy to measure how
uniformly nodes were distributed. The authors noted that
benign domains tend to be distributed in the same timezone,



while Fast-Flux nodes are widely distributed across multiple
timezones. Huang et al. further noted if all the hosts of a botnet
were to occur in the same timezone, timezone based entropy
would not be an effective measure for detecting if the hosts
belonged to a benign or Fast-Flux domain.

The work performed by Caglayan, Toothaker, Drapaeau,
Burke and Eaton [2] aimed to model the behavioral patterns
of Fast-Flux botnets. Using DNS records, they showed Fast-
Flux botnets exhibit common characteristics: that botnets
form clusters based on botnet size, growth and operation.
Furthermore, it was shown that the majority of Fast-Flux
botnets operate in more than five countries at a time, averaging
between 20 and 40 countries. Hu, Knysz and Shin [3] studied
the global IP usage patterns of Fast-Flux botnets. Their work
benefited from having a global perspective, with 240 nodes
on four continents monitoring DNS traffic. Hu et al. found
that Fast-Flux botnets advertise IP addresses from multiple
countries, irrespective of where the DNS query came from,
where-as Content Distribution Networks (CDNs) advertise IPs
in a geographically aware manner. This observation provides
valuable insight into the operation of Fast-Flux botnets, and
furthermore helps determine how a classifier that is capable of
differentiating between Fast-Flux botnets and CDNs may be
constructed.

This paper differs from previous works by taking the novel
approach of applying statistical methods from animal and plant
dispersion research. This novel technique allows for classi-
fication of domains, solely from the geographic dispersion
of the associated nodes. Classification allows for botnet C2
distribution to be labeled as randomly distributed or clustered.
In previous work by the authors, it was shown how Fast-Flux
botnets could be accurately detected using only DNS queries
[5]. This paper aims to build on this work and possibly lead
to a fully DNS-based malware detection framework.

III. DATASET

The datasets used were divided into malicious (Fast-Flux)
data and legitimate (safe) data. The legitimate domain data
was obtained from the “Alexa Top 1000 Global Sites” list
[6]. The Alexa dataset was cross-correlated with the “Google
Doubleclick Ad Planner Top-1000 Most Visited Sites” list
[7]. The malicious data was taken from multiple sources,
including the Fast-Flux trackers for the ZeuS [8], SpyEye [9]
and other Fast-Flux botnets [10]. Data for the Hlux2/Khelios
botnet was obtained from a large European ISP. The ZeuS
Fast-Flux domains were obtained before the Microsoft take-
down of ZeuS domains in March 2012 [11].

IV. GEOGRAPHIC DISPERSION

The Domain Name System is used to resolve multiple
network addresses to a central domain name. Domain name
lookups allow infected hosts in the botnet to look up the
address of C2 servers from which they need to receive instruc-
tions. Nazario and Holz noted that hosts used as C2 servers for
a botnet need to meet specific criteria. These criteria include a
globally accessible, globally unique IP address [12]. In further

work Holz, Christian, Konrad and Freiling [13] identified the
inherent distributed structure of botnets as a distinguishing
factor. To contrast, legitimate domains tend to be set up with
geographic location in mind, with all servers for the domain
hosted in a central location, such as a data-center.

−150 −100 −50 0 50 100 150

−1
00

−5
0

0
50

q q

q
qq

q

q

q

q q

q q

q

google.com
cjjasjjikooppfkja.ru (ZeuS domain)

Longitude

La
ti

tu
d
e
 

Figure 1: Geographic Distribution of Hosts for a Botnet and
a Legitimate Domain

As seen in Figure 1 a Fast-Flux domain such as cj-
jasjjikooppfkja.ru has C2 servers widely dispersed globally,
in this particular instance 11 different servers in 11 different
countries across three continents. To contrast, a legitimate
domain such as google.com has all six servers returned by
a DNS query result located in one central location. The
timezone in which a server is located is also of use as
noted by Huang et al. [4]. The geographic distribution can
be further analysed on a more finer grained level than just by
country level, using co-ordinate systems such as the Universal
Transverse Mercator system (UTM) and the Military Grid
Reference System (MGRS). Table I provides the translation
of IP addresses to geographic locations for a known Fast-Flux
domain using the three different co-ordinate systems.

Table I: Geographic Data for a Fast-Flux Domain (cj-
jasjjikooppfkja.ru)

IP Address Latitude:Longitude UTM MGRS
79.108.149.71 38.25:-0.7 37M 30SYH0125936055
79.139.110.20 49.7833:22.7833 39Q 34UFA2837416063
31.45.148.102 38.0:-97.0 37Z 14SPH7560307702
88.132.63.164 47.0333:19.7833 38Q 34TDT0755809583
124.6.3.225 22.6333:120.35 34Z 51QTF2762705352
89.229.214.126 53.7333:18.9167 39Q 34UCE6257855864

A. GeoIP Database

The company MaxMind has developed an IP Intelligence
database [14], that contains geographic information for IP ad-
dresses throughout the entire world. The GeoIP City database,
used by this research, allows for the country, city, latitude,
longitude and other information pertaining to an IP address to
be retrieved.



B. Geographic Value

The geographic locations for each server needed to be
assigned a numerical value to be used in calculations. These
values were obtained using three different means. Table II
shows the numerical values as calculated from a servers
timezone, UTM grid location and MGRS grid location.

Table II: Numeric Values for the IP Address 59.146.177.153

Method Actual Value Numeric Value
Latitude:Longitude 35.685º:139.7514º -
Timezone Asia/Tokyo 1000
UTM 36Z 3240
MGRS 54SUE8701849729 78943180741488

1) Timezone: The timezone in which a server is located
allows for a value that is easy to calculate and quantify. Using
Greenwich Meridian Time (GMT) as the base value of zero,
each timezone was assigned a value. GMT+1 was assigned the
value of 100, GMT+2 the value 200 and so forth. This was
repeated for the timezones GMT-1 (100),GMT-2 (200).

2) Universal Transverse Mercator Coordinate System : The
Universal Transverse Mercator (UTM) coordinate system is an
alternative to the standard latitude and longitude coordinate
system. Developed for use by the American Army, UTM is
based on an ellipsoidal model of the Earth. The UTM system
allows the earth to be divided into sixty distinct zones, each
zone representing a six-degree band of longitude. For UTM to
be used in the calculations discussed in Section V the UTM
value needed to be converted to a fully numeric value. This
was achieved by multiplying the numeric grid designator with
the ordinal value of the alphabetic grid designator.

3) Military Grid Reference System: The Military Grid Ref-
erence System (MGRS) was developed to standardise geoco-
ordinatation between NATO militaries. The MGRS is based on
the UTM grid system and the similar Universal Polar Stereo-
graphic grid system. MGRS allows coordinates to be described
as a grid point, down to one square meter. A MGRS grid point
is identified by a grid zone designation, followed by a 100,000-
meter square identification. For example: using MGRS, the
latitude (26.12) and longitude (28.04) for Johannesburg, South
Africa can be represented as 35RPJ3997589726. The MGRS
value provides a grid location for each C2 server. This grid
location needs to be converted into a numeric value to be
used with the calculations discussed in Section V. This was
achieved by multiplying the value V1 with the value V2.
V1 was calculated using the first numeric grid descriptor
multiplied with the ordinal values of the alphabetic grid
descriptors. V2 was the integer value of the 100,000-meter
square identification.

V. SPATIAL AUTOCORRELATION

Correlation is used to measure the dependence or statistical
relationship between any two points in a distribution. This
correlation can refer to any characteristic that the points share
such as geographic location, value or dependence on other
points. Autocorrelation refers to the cross-correlation of a
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(b) Histogram for Fast-Flux Domains

Figure 2: Histograms of Mean Nearest Neighbour Distances
for Legitimate Domains (2a) and Fast-Flux (2b)

signal by itself, allowing for noise to be removed from the
distribution. In statistics, autocorrelation is used for finding
repeating patterns in a distribution. This has lead to the use
of autocorrelation in different fields of study such as signal
processing. While autocorrelation measures the dependence
of points in time, spatial autocorrelation was developed to
measure the dependence of points in two-dimensional space.
Spatial autocorrelation is a branch of statistics that measures
the spatial dependence of points within a geographic area.
This measure of dependence is based on the principle that
observations in close proximity are more likely to be similar
than observations that are distant [15]. Spatial autocorrelation
has largely been used in animal population statistics and
disease modeling [15]. It is hypothesised that the principles
behind animal population statistics and distribution modeling
can be applied to the geographic distribution patterns of Fast-
Flux botnets. Figures 2 clearly show that legitimate domain
servers (Figure 2a) tend to be closer together, with the majority
of servers being in the same location, while the C2 servers of
Fast-Flux domains (Figure 2b) tend to be far apart with a bi-
nomial distribution centered around a mean nearest neighbour
distance of 5000km. The use of spatial autocorrelation reduces
the effect large outliers have on the overall classification.

A. Moran’s I

Moran’s coefficient, known as Moran’s I, provides a mea-
sure of Spatial autocorrelation. Moran’s I is based on the
observation that points spatially closer together are more likely
to be similar than points far apart [16]. Values returned using
Moran’s I range from -1 to +1. Negative spatial correlation is
indicated by values less than zero, while positive spatial corre-
lation is indicated by values greater than zero. An index value
of zero represents a perfectly random spatial pattern. Values



outside the range -1 to +1 indicate spatial autocorrelation that
is significant at the 5% level. Moran’s I can be calculated using
the formula:

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2

Where:

• I is the Moran Index
• N is the number of locations returned by the DNS query;
• Xnis the value of the nth variable of interest (timezone

value, UTM value, MGRS value);
• X̄ is the average of all values of N ;
• wij is the weight (distance) between two spatial points i

and j.

Moran’s I allows for the measuring of global spatial autocor-
relation and is less influenced by large amounts of whitespace,
making it ideal for use in classifying Fast-Flux C2 server
distribution as there are large distances between the servers.
Inversely, the global nature of Moran’s I decreases it’s effec-
tiveness for measuring localised spatial correlation.

B. Geary’s C

Similarly to Moran’s I, Geary’s C is used to measure spatial
autocorrelation. The value of Geary’s C lies in the range
0 and 2. Values between 0 and 1 indicate positive spatial
autocorrelation while values between 1 and 2 indicate negative
spatial autocorrelation. A value of 1 for Geary’s C indicate no
spatial autocorrelation. Geary’s C can be defined by:

C =
(N − 1)

∑
i

∑
j wij(Xi −Xj)

2

2W
∑

i(Xi − X̄)2

Where:

• C is the Geary value
• N is the number of locations returned by the DNS query;
• Xnis the value of the nth variable of interest (timezone

value, UTM value, MGRS value);
• X̄ is the average of all values of N ;
• wij is the weight (distance) between two spatial points i

and j;
• W is the sum of all wij .

VI. RESULTS

The aim of this research was to classify domains as ei-
ther Fast-Flux or legitimate, based on the the geographic
distribution of the domains servers. Different methods of
indicating geographic position were used, including the Lat-
itude/Longitude, the UTM grid position and the MGRS grid
position. Distance between geographic points were measured
using the Haversine formula which measures the distance
between two points on a curved surface.

A. Moran’s I

Moran’s I relies on the observation that points closer to-
gether in geographic space tend to have more similarities than
points far apart. All calculations were performed using the
formula for Moran’s I outlined above. The values for I were
calculated separately for legitimate and Fast-Flux domains.
Once these values had been calculated they were compared
to see if there was a distinguishing value which could be used
for accurately classifying the domains.

Table III: Moran’s I Classifier Performance Using Different
Geographic Properties

TPR FPR ACC
Timezones 96.73% 3.42% 96.61%

UTM 99.03% 6.12% 95.35%
MGRS 99.35% 6.02% 95.28%

TPR: True Positive Rate, FPR: False Positive Rate, ACC: Accuracy

1) Timezones: The index value returned by the Moran
formula, I, was used to classify a domain as legitimate or
Fast-Flux. Results showed that the index value for legitimate
domains was generally zero, with 97% of observed legitimate
domains having an index value of zero. The opposite holds
true for Fast-Flux domains, with only 3% of observed domains
having an index value of zero. Using this as a classifier,
domains were labeled as Fast-Flux if the returned index value
was not equal to zero. Results for this classifier can be seen
in Table III, where the classifier has a high true positive rate
of 96.73% with a low false positive rate of 3.42%.

2) Universal Transverse Mercator (UTM): Using the UTM
grid location of a server provides a more fine grained result
than timezones as they cover a smaller area and take into
account the hemisphere in which a server is located. Figure 3
compares the density distribution of the Moran index value for
legitimate (Alexa Top 1000) domains and Fast-Flux domains.
It is observed that the index value for legitimate domains is
zero, or very near zero, while Fast-Flux domains tend to have
an index value of one or greater. Based on a classifier value
of zero where any index value greater than zero indicates a
Fast-Flux domain, a true positive rate of 99.03% was achieved
as seen in Table III, while a low false positive rate of 6.12%
was achieved. This resulted in an overall accuracy of 95.35%
for the classifier.

3) Military Grid Reference System (MGRS): The MGRS
provides a grid system with smaller grids than the UTM co-
ordinate system. Using MGRS produced interesting results as
the index value for Fast-Flux domains was distributed between
-0.5 and zero. While the index value for legitimate domains
was mostly zero, a smaller cluster formed around an index
value of -1. Basing the classifier on the same logic as was
used for the timezone and UTM classifier, with an index value
of zero indicating a legitimate domain, a true positive rate of
99.35% was achieved. A lower false positive rate of 6.02%
was achieved. As seen in Figure 4, the Moran’s I for numerous
legitimate domains is -1, with no Fast-Flux domains having a
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Figure 3: Kernel Density Comparison of Moran’s I for Legit-
imate and Fast-Flux Domains Using UTM

Moran’s I of -1. Thus modifying the classifier by classifying
any value of -1 or 0 as legitimate led to an improved false
positive rate of 1.24%, increasing the classifiers accuracy to
98.89%.
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Figure 4: Kernel Density Comparison of Moran’s I for Legit-
imate and Fast-Flux Domains Using MGRS

For simplicity and continuity, the results reported in Table
III were based on the same classifier value of zero as was used
for the timezones and UTM methods.

B. Geary’s C

Geary’s C is used for spatial autocorrelation, but is more
sensitive to localisation than Moran’s I. The use of Geary’s C
should allow for classification of spatial clusters in instances
where Moran’s I might not be as accurate. This might occur
when the geographic location of servers are close together.

1) Timezones: The value produced by Geary’s formula
was used as the basis for classifying a domain as legitimate
or Fast-Flux. The Geary C value was returned as zero for
96.58% of all legitimate domains, while returning a value
greater than zero for 92.3% of Fast-Flux domains. Using this
as the classification criteria, a classifier accuracy of 95.43%

Table IV: Geary’s C Classifier Performance Using Different
Geographic Properties

TPR FPR ACC
Timezones 91.83% 3.42% 95.43%

UTM 98.37% 4.56% 96.14%
MGRS 99.64% 6.02% 95.35%

TPR: True Positive Rate,FPR: False Positive Rate,ACC: Accuracy

was achieved with a true positive rate of 91.83% and a false
positive rate of 3.42%, as seen in Table IV.

2) Universal Transverse Mercator (UTM): As seen with the
Moran’s I (Section VI-A2), UTM provides a higher degree
of certainty when classifying domains due to the more fine
grained nature. The Geary’s C value for legitimate domains
was clustered around zero as with the Moran’s I. The value
for Fast-Flux domains displayed two clusters, one at 0.5 and
a second around 1. This led to the use of the same classifying
criteria as before, with a value of zero indicating a legitimate
domain while a value greater than zero indicated a Fast-Flux
domain. The results from this classifier resulted in a 98.37%
true positive rate with a low false positive rate of 4.56%. The
overall accuracy for this classifier was a high 96.14%.

3) Military Grid Reference System (MGRS): The expected
results from the MGRS classifier were a greater degree of ac-
curacy than the UTM classifier for both Moran’s I and Geary’s
C. Values returned for legitimate domains were clustered at
zero, as seen in Figure 5. The values of C for Fast-Flux
domains were clustered around 1. There were no negative
values for Geary’s C as expected (see Section V-B). The
classifier was constructed with a value of zero indicating a
legitimate domain and any value above zero indicating a Fast-
Flux domain. The performance of the classifier was in line
with the performance of the MGRS classifier based on Moran’s
I, with a similar true positive rate of 99.64%. The false positive
rate of the classifier remained low at 6.02% and resulted in a
classifier accuracy of 95.35%.
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Figure 5: Kernel Density Comparison of Geary’s C for Legit-
imate Domains and Fast-Flux Domains
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Figure 6: ROC for Moran’s I (6a) and Geary’s C (6b)

VII. DISCUSSION

The performance of Moran’s I and Geary’s C are closely
matched and provide high rates of accuracy when trying to
distinguish between legitimate and Fast-Flux domains based
on the geographic locations of the domain servers. Figure 6
compares the performance of the six different classifiers. Fig-
ure 6a compares the performances of the three classifiers based
on Moran’s I, while Figure 6b compares the performances of
the classifiers based on Geary’s C. Using the area under the
curve (AUC) as a performance metric, the classifier based on
Moran’s I, using the MGRS locations as values, produced the
most efficient classifier, with an AUC of 98.54%. The least
effective classifier is the Geary’s C based classifier using the
timezone values, with an AUC of 72.30%. The AUC for all
classifiers is seen in Table V.

Table V: Area Under Curve Comparison for Multiple Classi-
fiers

Geographic Feature Moran’s I Geary’s C
Timezone 83.50% 72.30%

UTM 83.60% 91.23%
MGRS 98.54% 91.10%

Each classifier employed used a value of zero as an identifier
of legitimate domains, while any other value was classified
as Fast-Flux. The short distance between legitimate server
locations has been identified as a possible reason for legitimate
queries returning a Moran’s I or Geary’s C of zero. Legitimate

domains tend to have servers located in the same geographic
location, while legitimate servers that do have servers in differ-
ent geographic locations tend to have a mean nearest neighbour
distance of 1000km. Fast-Flux C2 servers tend to be widely
distributed, with no two servers located in the same location.
The mean nearest neighbour distance for these domains is
5000km. It was also observed that legitimate domain queries
tend to return fewer servers per DNS query while Fast-Flux
domains returned a large number of C2 servers per query.
Responses with a single location will have a Moran’s I and
Geary’s C of zero, while the greater the number of locations
returned, the more likely a larger value for Moran’s I and
Geary’s C. It was observed that using a modified classifier
value for the MGRS based Moran’s I classifier could lead to
greatly increased accuracy with a low false positive rate. This
observation may be applied to future work where a learning
algorithm could be used for determining the optimum classifier
value.

The expected outcome was that Geary’s C would be a
more effective measure than Moran’s I as it handles localized
clustering better. This did not hold true, as seen from Table
V, the performance of Moran’s I was better than Geary’s C
in certain circumstances. The overall performance difference
of the two classifiers was, however, minimal and this may be
attributed to the relatively small number of locations tested
on each occasion. It is expected that clustering of several
hundreds or thousands of different locations will be better
handled by Geary’s C where as Moran’s I will become affected



by the large amount of whitespace on a global scale.

VIII. CONCLUSION

Fast-Flux domains use multiple different servers located
around the world to provide robust botnet control systems that
are more resilient to shutdown attempts. This has lead to the
development of systems that are capable of identifying Fast-
Flux domains and to prevent access to those domains. This
paper examined techniques for detecting Fast-Flux Command
and Control (C2) domains. The techniques examined were
able to accurately identify Fast-Flux domains based solely
on the geographic locations of the C2 servers. The use of
spatial autocorrelation has lead to the creation of accurate
and lightweight classifiers. Analysis was performed on known
Fast-Flux domains, with the most accurate classifier correctly
identifying 99.35% of domains as Fast-Flux. The proposed
solution provides an accurate means for improving network
egress filtering, furthermore providing an effective additional
layer of network defense usable in conjunction with existing
defense systems. Future work will expand on the use of
geographic location analysis, combining geographic location
with other features identified as unique to Fast-Flux domains.
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