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Abstract—Semantic similarity between different 

terminologies is becoming a generic problem that extends across 

numerous domains, touching applications developed for 

computational linguistics, artificial intelligence, cognitive science 

and, in the case of this paper, digital forensics. Despite the 

usefulness of semantic similarity measures in different domains, 

accurately measuring semantic similarity between any two terms 

remains a challenging task. The main difficulty lies in developing 

a computational method with the ability to generate satisfactory 

results close to how human beings perceive these terminologies, 

especially when used in their domain of expertise. 

This paper presents a novel approach of using the Web to 

measure semantic similarity between two terms x and y in the 

digital forensics domain. The proposed approach is based on the 

Euclidean distance, a mathematical concept used to calculate the 

distance between two points. This paper also shows how 

computing the absolute value of the difference of the logarithms 

of the hit count percentages of any given terms x and y relates to 

the computed Euclidean distance of x and y. Percentages are 

computed from the total number of hit counts reported by any 

Web search engine for the search terms x, y and the logical x 

AND y together. Finally, these concepts are used to deduce a 

formula to automatically calculate a semantic similarity measure 

coined as the Digital Forensic Absolute Semantic Similarity 

Value of the terms x and y, denoted as DFASSV(x, y). 

Experiments conducted using the proposed DFASSV method 

focuses on the digital forensics domain. However, a comparison 

of the DFASSV approach with previously proposed Web-based 

semantic similarity measures shows that this approach is well 

suited for digital forensics domain terminologies. In the authors’ 

opinion however, the DFASSV approach can be applied in other 

domains as well because it does not require any human-

annotated knowledge. DFASSV is a novel approach to semantic 

similarity measure and constitutes the main contribution of this 

paper.  
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I.  INTRODUCTION 
An accurate measurement of semantic similarity between 

terms is a matter of concern in many different domains. For 
example, due to the problem of ever-changing technological 
trends in digital forensics, new terms are constantly introduced 
into the domain and new meanings assigned to existing terms. 

Depending on the traditional knowledge-based approach, 
capturing the meaning of these new terms can be very hard, if 
not next to impossible. Such knowledge could be useful in, for 
example, the definition of new digital forensic terms, 
especially when attempting to standardise terms in the field of 
digital forensics. The authors are currently involved in the 
creation of an international standard for the digital forensic 
investigation process where the need arises to carefully define 
and reason about specific digital forensic terms. 

This paper, therefore, proposes a method to compute the 
semantic similarity measure between two terms in the digital 
forensic domain using Web search engines. This method is 
referred as the Digital Forensic Absolute Semantic Similarity 
Value (DFASSV) in this paper. For the purpose of this paper 
and scalability of the semantic similarity measure, the terms 
that are paired using the proposed DFASSV method are rated 
on a scale of 0 to ∞ where 0 denotes identical semantic 
similarity between the two terms and ∞ denotes no semantic 
similarity. Experiments conducted using the proposed method 
have delivered impressive results. 

The Web is a vast entity where an astronomical amount of 
information is amassed. It is also the largest semantic 
electronic database in the world [1]. This "database" is 
available to all and can be queried using any Web search 
engine that can return aggregate hit count estimates for a large 
range of search queries [1]. New information is also added to 
the Web on a daily basis. To tap into this rich bank of 
information, Web search engines are the most frequently used 
tools to query for information related to a particular term. To 
the authors’ knowledge, there is so far no better or easier way 
to search for information on the World Wide Web than simply 
using Web search engines like Google. However, we do not 
dispute the existence of other techniques that can be used to 
search and extract information from the Web. For the purpose 
of this study, however, the Google search engine was used. 

As for the remaining part of this paper, section II discusses 
related research work. In section III some technical 
background is explained, followed by a discussion of the 
proposed DFASSV method in section IV. Experimental results 
are considered in Section V, while conclusions are drawn in 
section VI and mention is made of future research work. 

. 



II. RELATED WORK 
There are several methods for measuring the semantic 

similarity between terms that have been proposed by other 
researchers. Some of these methods are based on taxonomy 
while others are Web-based. Taxonomy-based methods use 
information theory and hierarchical taxonomy such as the 
WordNet [4] to measure semantic similarity. Web-based 
methods, on the other hand, prefer the Web as a live and 
active corpus to a hierarchical taxonomy [5]. 

The concept of calculating similarity between two words 
based on the length of the shortest path connecting the two 
words in taxonomies is discussed in a paper by Roy Rada et al. 
[6]. If a word is polysemous (i.e. having more than one sense), 
then multiple paths may exist between the two words. In such 
cases only the shortest path between any two senses of the 
words is considered for calculating similarity. The problem of 
using this approach is that it assumes that, ‘theoretically’ all 
the paths in the taxonomy represent equal distances [7] (i.e. 
the path distance remains the same in all cases and at all 
times). In practice however, this assumption might not be true; 
hence the results of the computed semantic similarity measure 
may well be incorrect. 

In another paper, Ming Li et al. [9], discuss the concept of 
using Web search engine hits for extracting social network 
information on the Web. Their approach measures the 
association between two personal names using the Simpson 
coefficient [9], [17] and [18] and is calculated based on the 
number of Web hits for each individual name and its 
conjunction. This approach however, focuses more on the 
strength of the relation, while the current paper focuses more 
on the automatic identification of the underlying semantic 
similarities. 

In 2007, Cilibrasi and Vitànyi [1] introduced the concept of 
the Normalized Google Distance (NGD), which was based on 
a 2004 research paper on normalized information distance 
between two strings (discussed in [9]), and which calculates a 
distance metric between words using page counts indexed by a 
Web search engine. The NGD is evaluated in a word 
classification task (i.e. words are grouped based on their 
similarities according to the model referred to in [10]). This 
also means that the words in question usually display the same 
formal properties, especially their inflections and distribution. 
The problem with this method is that it uses a value (M) that 
can be defined as the total number of pages on the Web that 
Google will search when given a query. The value M is 
quoted as 8058044651Web pages [1]. According to an Official 
Google Blog [11], this number has increased significantly 
since 1998 when it was only 26 million. By 2000 the Google 
index had reached the one billion mark. Over the last decade, 
this number has been changing and, recently, even the Google 
search engineers stopped calculating it due to the sheer 
vastness of the Web these days [11]. The Google systems that 
process links on the Web recorded that 1 trillion 
(1,000,000,000,000) unique URLs exist on the Web at once. 
Therefore, it is the authors’ opinion that, because of the ever 
changing nature of the Web, depending on this value to 

calculate M might produce unreliable similarity scores over 
time. 

In their paper, Chen et al. [12] propose a Web-based double 
checking method to find similar words. They collect snippets 
for two words x and y from the Web search engine and use 
these to count the number of occurrences of x in the snippets 
of y, and y in the snippets of x. The two values are then 
combined nonlinearly to compute the similarity between x and 

y. The problem with this method is that it relies heavily on the 
search engine’s ranking algorithm. Although two words may 
be similar, it is not a guarantee that one will find y in the 
snippets of x or vice versa [10]. This may also have some 
effect on the final computed similarity measure. 

There are many other proposed methods for finding word 
similarity using the Web, but none of the cited references in 
this paper uses the reported Web hit count in the way that is 
introduced in this paper. Our approach uses the Web and the 
Web search engines to automatically calculate semantic 
similarity between two terms, based on the number of hit 
counts reported for each terms (rather than for each hit).  

The hit count of a query is usually an estimated number of 
Web pages containing the queried term as reported by a Web 
search engine. The hit count, however, may not necessarily be 
equal to the term frequency, because the queried term may 
appear many times on a single Web page. Therefore, an 
additional hit count is computed where a search term x and 
another search term y appear both on the same Web page, 
indicated as a logical x AND y search query. The search 
results of this query therefore, can be considered as the global 
estimated value of the co-occurrence of the terms x and y 
together on the Web [2]. Logical x AND y is also used in this 
study to capture the context where both x and y are used 
together on the same Web page. 

The presentation in this paper is a new approach to using 
the hit counts to calculate semantic similarity. This 
observation is also confirmed by the experimental results 
based on a benchmark data set of words from Miller and 
Charles (1998) [13]. This data set is a subset of Rubenstein 
and Goodenoughs' [15] original data set of 65 word pairs. 
Although the Miller and Charles experiment was carried out 
25 years later than that of Rubenstein and Goodenough, the 
two sets of ratings are highly correlated with a correlation 
coefficient of 0.97 (on a scale of 0 to 1, where 0 indicates no 
correlation and 1 indicates complete correlation) [7]. 
Therefore, the Miller and Charles ratings can be considered as 
a reliable benchmark data set for evaluating semantic 
similarity measures. 

III. TECHNICAL BACKGROUND 
Much of the theory explained in this paper is based on 

computing the Euclidean distance between any two points in 
the Euclidean space, and its relationship with the computed 
absolute value of the difference of any two real numbers in the 
number line. Different distance functions result in different 
distance measures. However, the Euclidean distance used in 
this paper is considered the most useful because it corresponds 
to the way objects are measured in the real world [25]. For 



more information on Euclidean distance and absolute value, 
please refer to [22] and [23] respectively. 

A. The Euclidean distance 

The Euclidean distance is defined as the distance between 
any two points in a plane that one would measure using a ruler 
and it is given by the Pythagorean Theorem [19], [20], [21] and 
[22].  If, for example, x = (x1, x2) and y = (y1, y2) are two given 
points on the plane, then their Euclidean distance (d) can be 
defined as [19],  

√   -   
     -    

    (1)  

Using this formula as distance, the Euclidean space becomes a 
metric space also called the distance space. 

For any given two points x and y the Euclidean distance 
between them is the length of the line segment connecting 
them. In a Cartesian coordinate, for example, if x = (x1, x2,...,xn) 
and y = (y1,y2,…, yn) are two points in the Euclidean space, 
then the distance (d) from x to y, or from y to x can be defined 
by equation 2,which can be seen as a generalization of equation 
1 [19] and [20]. 

               √   -   
     -    

       -   
  (2) 

where n represents any number denoting a point xn and yn in 
the Cartesian coordinate. 

The position of any point in a Euclidean n-space is usually 
called a Euclidean vector. Therefore, the points x and y can be 
referred to as Euclidean vectors. Starting from the origin of the 
space, their tips indicate the distance between the two points 
(also called the magnitude or the norm). The Euclidean norm 
or the length of a vector x is the real number denoted as || || 
[24] and measures the distance of x as defined by equation 3 
[26]: 

|| ||            √     (3) 

The distance, therefore, between x and y can be computed as 
[26]: 

        ||   ||   (4) 

The Euclidean norm and distance may as well be expressed in 
terms of components as shown in equation 5 [24] and [26]: 

|| ||  √  
    

      
  √    (5) 

If the length of a vector is considered as the distance from 
its tail to its tip, then it becomes clear that the Euclidean length 
of a vector is a special case of the Euclidean distance. 
Therefore, the distance between x and y is the Euclidean length 
of the distance vector defined as [24]: 

|| - ||  √( - )   -    (6) 

Equation 6 is homogeneous to equations 3, 4 and 5 and can 
be used to compute the magnitude or the norm of the numerical 
difference between any two real numbers x and y in the number 
line, denoted as|| - ||.  

It is also clear from equation 6 that the one-dimensional 
Euclidean distance between x and y can be realized. 

1) One-dimensional Euclidean distance 
In the case of one dimension, the distance between two 

points x and y on the real number line is equivalent to the 
absolute value of their numerical difference. Thus, if x and y 
represents two real numbers, then the distance between them 
can be computed as [27]: 

√  -    | - |   (7) 

In addition, in one-dimension there is usually a single 
homogeneous, translation-invariant distance function, which is 
the Euclidean distance and defines the distance between 
elements of a set. Translation-invariant implies that starting 
from the origin, at least in one direction, the object is infinite. 
In higher dimensions, up to n-dimensions, there are other 
possible distance functions but these are beyond the scope of 
this paper. We therefore consider only up to the two-
dimensional Euclidean distance in this paper. 

2) Two-dimensional Euclidean distance 
In the Euclidean plane, if x = (x1, x2) and y = (y1, y2), then 

the distance (d) between the two points x and y is given by 
equation 8 [28], which is homogeneous to equations 1 and 2. 

         √   -    
     -    

     (8) 

At this point the discussion of the Euclidean distance 
presents us with the foundation of establishing its relationship 
with the absolute value. 

B. The relationship between Euclidean distance and absolute 

value 

Having gained an understanding of the Euclidean distance, 
we now establish its relationship with the absolute value of 
any real number x denoted as |x|. The absolute value |x| is the 
numerical value of x without regard to its sign. For example, 
the absolute value of +x is x, and the absolute value of -x is 
also x. This simply means, the absolute value of any real 
number x may be thought of as its distance from zero (i.e. how 
far x is from zero on the number line) [29], [30] and [31].  

In practice, the absolute value of all real numbers is always 
positive. See equation 9. The concept of absolute value is 
closely related to the notion of distance in various 
mathematical and physical contexts. In this paper, therefore, 
the relationship between the Euclidean distance and the 
absolute value is established first. This relationship is then used 
to generate a formula that automatically calculates a semantic 
similarity measure (the distance) between any two terms x and 
y in the digital forensics domain. For any real number x its 
absolute value denoted by |x| can be defined as shown in 
equation 9 [32]: 

| |  {
        

-        
  (9) 

Based on this definition, the absolute value of x is always 
either positive or zero, but never negative. In addition, the 
absolute value of the difference of any two real numbers x and 



y defines the distance between x and y denoted as |   | 
which is equivalent to the Euclidean distance of x and y. Since 
in mathematics the square-root of a number x without regard to 
its sign represents a positive square root, and the absolute value 
of x is always either positive or zero, but never negative,  it 
follows that [32]: 

| |  √      (10) 

Equation 10 is homogeneous to equation 7 and is 
sometimes used as a definition of the absolute value of any real 
number [32]. For any real numbers x and y, the absolute value 
will always have the following four fundamental properties 
[32]: See Figure 1. 

 
Figure 1: Fundamental properties of absolute value 

C. Deriving the similarity distance 

From the discussions above, it should now be clear that the 
absolute value of any real number is closely related to the idea 
of distance. The absolute value of any real number, therefore, is 
the distance from that number to the origin, along the real 
number line. For any given two real numbers x and y, the 
absolute value of the difference of x and y is the distance 
between them. The standard Euclidean distance between two 
points, for example x and y, defined in equation 2 affirms this, 
where                  and                 . In the 
Euclidean n-space, the distance is defined as [27]: 

d(x, y) =√∑    -   
  

     (11) 

Note that equation 11 is homogenous to equation 2. This 
can be viewed as a generalisation of | x − y |, since if x and y are 
two real numbers, then (from equation 10) we can define: 

| - |   √  -      (12)  

Equation 12 is homogeneous to equation 7 and equation 10. 
Equation 7 is used when computing the one-dimension 
Euclidean distance while equation 10 is used as a definition of 
the absolute value. Thus, equations 7, 10 and 12 prove that the 
‘absolute value’ distance for any real numbers is equal to the 
Euclidean distance, defined in equation 7, when you consider 
them as either one and/or two-dimensional Euclidean spaces 
both defined in equation 7 and 8 respectively. Hence, the 
properties of the absolute value of the difference of any two 
real numbers (non-negativity, identity of indiscernibles, 
symmetry and the triangle inequality See Figure 2) agree with 
the concept of the distance function used to define the distance 
between the elements of a set. For any real value function f on 
a set X × X is called a distance function (or a metric) on X, if it 
satisfies the following four axioms [35] and [36]. See Figure 2. 

 
Figure 2: Distance function axioms 

Note that condition (i) and (ii) together produce positive 
definiteness and the first condition is implied by the others. The 
technical background discussed in this section, especially the 
relationship between Euclidean distance and absolute value 
therefore simplifies the understanding of the proposed 
DFASSV method. 

IV. THE PROPOSED DFASSV METHOD 
Hit counts reported by Web search engines are useful 

information sources for this study and, as such, are used as 
input to this study. This is first explained in the next section, 
where after the calculation of the DFASSV method is 
explained. 

A. Understanding the concept of ‘hit Counts’ 

The hit count of a query as discussed earlier, is an estimated 
number of Web pages containing the queried term as reported 
by a Web search engine.  

In addition, the Web constitutes the largest semantic 
electronic "database" available on earth. Information can be 
accessed and extracted via any Web search engine that can 
return aggregate hit count estimates for a large range of search 
queries [1].The Web also provides semantic information for 
almost every known word or term. In some cases, semantics 
associated with each term or word is also described. In our 
approach, however, as explained earlier, we do not consider 
just the hit count for the logical x AND y search query as the 
only parameter for assessing the semantic similarity, but we 
also include the hit counts for the individual terms x and y 
before computing the semantic similarity value. We will, 
therefore, adopt the following notations in this paper: 

f(x) denotes the hit count for the queried term x, 
f(y) denotes the hit count for the queried term y and 
f(x, y) denotes the hit count for the logically x AND y 

search query where both x and y appears together on the same 
Web page. 

To calculate the Digital Forensic Absolute Semantic 
Similarity Value of x and y, denoted as DFASSV(x, y), we do 
not need to know the number of Web pages indexed by the 
Web search engine quoted as 8058044651 in [1]. This is so 
because according to [14] the process of estimating the 
number of pages indexed by a search engine can be a very 
difficult task. This paper, however, does not discuss the 
process of estimating the number of pages indexed by a search 
engine in any further detail. (For more information in this 
regard, please refer to [11]).  

Our approach however, replaces the number of pages 
indexed by a search engine with a simple computed value (T) 
defined as the sum of the hit counts reported by the Web 



search engine for the search terms x, y and logical x AND y 

together.  
Thus,                        (13) 
where f(x), f(y) and f(x, y) are as defined earlier. 

Recalling the concept of the Euclidean distance and the 
absolute value at this point, we now establish their relationship 
with the proposed DFASSV method. 

B. Digital Forensic Absolute Semantic Similarity Value 

(DFASSV) 

In order to enhance communication among domain experts 
and also enable faster computation of meaning between 
computers in a computer digestible form, many long-term 
projects have been initiated to try and establish semantic 
relations between common objects and/or names of these 
objects. Good examples of these projects include the CYC 
project [3] and the WordNet [4]. The idea is to create a 
semantic Web of such vast proportions that rudimentary 
intelligence and knowledge about the real world objects 
emerge spontaneously. However, to achieve this, structures 
have to be properly designed with the ability to manipulate 
knowledge, and high quality contents have to be entered in 
these structures by knowledgeable human experts. While these 
efforts are good and take a long-term view, the overall 
information entered is very small when compared to what is 
available on the Web today [1]. We, therefore, take advantage 
in this study of the freely-available information on the Web 
and use it to calculate a semantic similarity measure between 
terms used in the digital forensics domain. 

The proposed method in this paper, computes the semantic 
similarity value between two terms x and y in digital forensics, 
based on finding the one-dimensional Euclidean distance 
defined in equation 7, which is equal to finding the absolute 
value of the difference of any two real numbers. See equations 
7 and12. 

To begin with, the hit counts f(x), f(y), f(x, y) and the value 
of T for any two digital forensic terms x and y is obtained 
using the Google search engine. These parameters are then 
used as input to the proposed DFASSV method. T is however, 
computed using equation 13. There are four input parameters 
defined as f(x), f(y), f(x, y) and T. Using equation 12, which is 
similar to one-dimensional Euclidean distance (see equation 
7); only two real numbers are needed as input. In order to 
establish a 1:1 mapping of the values of x and y in equation 
12, DFASSV replaces the values of x and y with the 
percentage values of f(x) and f(y) computed as:  

(
    

 
    )= percentage of the hit counts for the search 

term x and 

(
    

 
    )= percentage of the hit counts for the search 

term y. 

Substituting these values in equation 12 gives equation 14 

|   |   √((
    

 
    )  (

    

 
    ))

 

  (14) 

The value obtained from equation 14 is in the fixed range 
of 0 per cent to 100 per cent. Treating the points x and y as 

Euclidean vectors, starting from the origin (0%) of the space, 
their tips (100%) indicate the distance between the two points.  

As mentioned earlier, in one-dimensional Euclidean 
distance there is usually a single homogeneous, translation-
invariant distance function (i.e. starting from the origin at least 
in one direction the object is infinite). For a similarity distance 
of 0 to ∞ instead of 0 per cent to 100 per cent, equation 14 is 
further modified as follows:  

The values (
    

 
    )  and (

    

 
    ) , denoted as 

percentage of the hit counts for the search term x and y 
respectively, are substituted by their computed logarithms as: 
log (    

 
    )

 and   
log (    

 
    )  respectively 

Logarithm is a useful arithmetic concept used in all areas 
of science to help simplify the understanding of many 
scientific ideas. For example, logarithms may be defined and 
introduced in different ways as a means to simplify 
calculations. For the purposes of this study, we adopt a simple 
approach to simplify the computation of the Euclidean 
distance based on finding the absolute value of the difference 
of the logarithms of the hit count percentages of the terms x 
and y. There are no limits imposed on logarithms, thus their 
inputs and outputs can be in any range. Therefore, substituting 
these values in equation 14 gives rise to equation 15: 

|   |   √(   (
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    ))

 

               

Equation 14 and 15 are both analogous to equation 7 and 12. 
Equation 15 therefore, gives a value in the range of 0 to ∞ 

and can be re-written as equation 16, which is used to 
automatically compute the Absolute Semantic Similarity 
Value of the terms x and y in digital forensics denoted as 
DFASSV(x, y). Using the left hand side of equation 15, 
equivalent to the right hand side we can define DFASSV(x, y) 
as, 
            |   (

    

 
    )     (

    

 
    )|            

where 
f(x) = the hit counts for the search term x, f(y) = the hit counts 
for the search term y and T = the sum of hit counts for the 
search terms x and y as defined in equation 13. 

Equation 16, therefore, defines DFASSV(x, y), a new 
approach for calculating the semantic similarity between two 
terms x and y in digital forensics using Web search engines. In 
other words equation 16 denotes DFASSV as the computed 
absolute value of the difference of the logarithms of the hit 
count percentages of terms x and y. The experimental results 
obtained using the new proposed DFASSV approach was 
found to be remarkable and are discussed in the section that 
follows. 

V. EXPERIMENTAL RESULTS 
While the theory discussed in this paper is rather intricate, 

the resulting method is simple enough. Knowing that any 
given two digital forensics terms are perceived to be similar, 
the computed absolute semantic similarity value denoted by 



equation 16 can be used as a quick guide (proof) to show that 
the two given terms are truly semantically similar or not.  

For example, given any two digital forensic terms x and y, 
we find the number of hit counts for search term x denoted as 
f(x), the number of hit counts for search term y denoted as f(y), 
the number of hit counts for logical x AND y both appearing 
together on one page denoted as f(x, y), and finally the sum of 
hit counts denoted as (T). T is computed using equation 13. 

As a concrete example, let search term x be ‘Digital 
evidence’ and search term y be ‘Electronic evidence’. Using 
the Google search engine with hit counts as reported for the 
search terms x and y as on 14 April 2012, it follows that: 
“Digital evidence” f(x) =659000,   
“Electronic evidence” f(y) =575000,   
“Digital evidence”AND “Electronic evidence” f(x, y) =53900.  
Therefore T=                    =1287900. 

Substituting these values in equation 16 gives a semantic 
similarity measure of the terms ‘Digital Evidence’ and 
‘Electronic evidence’ of 0.0592. Since this value is relatively 
close to 0, it proves that the two terms are very closely related 
to the human-perceived meaning when used in digital 
forensics. It can also mean that, in case of a digital forensics 
investigation, the term ‘Digital Evidence’ can be used in the 
place of ‘Electronic Evidence’ without misleading the 
receivers of such information. 

To further analyse the performance of the proposed method, 
we conducted two sets of experiments. First we compared the 
similarity scores produced by the proposed DFASSV method 
against the Miller and Charles benchmark data set [13] and 
[14]. Secondly, the proposed DFASSV approach was tested 
using digital forensics domain terms to measure its 
performance against the human-perceived meaning of the 
selected terms. These two experiments are discussed in the 
two sub-sections that follow respectively. 

A. The Miller and Charles Benchmark Data Set 

To assess the performance of the proposed DFASSV 
method, we evaluated it against the Miller and Charles data set 
[13]. The latter is a subset of Rubenstein and Goodenough’s 
original data set of 65 word pairs [15]. As stated earlier, the 
Miller and Charles ratings are considered one of the most 
reliable benchmarks for evaluating semantic similarity 
measures.  

The term pairs using the proposed DFASSV method are 
rated on a scale of 0 to ∞ (infinite), where 0 means identical 
semantic similarity and ∞ means no similarity. This is the 
opposite of the Miller and Charles dataset where word pairs 
are rated on a scale of 0 (dissimilarity) to 4 (identical semantic 
similarity). In summary, infer from the results that the smaller 
the value computed by the proposed DFASSV method, the 
more similar the terms (See Table I).This is also true from the 
correlation coefficient value of -0.2777. (Note that a negative 
correlation coefficient indicates that as one variable increases, 
the other decreases, and vice-versa.) This is further depicted 
by a graphical representation of the similarity measures in 
Table I, shown in Figure 3. 

According to Cilibrasi and Vitànyi [1] Google events 
capture all background knowledge about the search terms 

concerned available on the Web. The Google event x, consists 
of a set of all Web pages containing one or more occurrences 
of the search term x. Thus, it embodies, in every possible 
sense, all direct context in which x occurs on the Web. This 
constitutes the Google semantics of the term x [1]. For this 
reason, in our experiments, the Google search engine was 
used.  

The input to the DFASSV method is therefore the reported 
Google hit counts for any paired terms x and y from the digital 
forensics domain. The DFASSV method works by calculating 
the Euclidean distance between the terms x and y, equated to 
the computed absolute value of the difference of the 
logarithms of the hit count percentages of x and y as shown 
earlier in equation 16. Given any two terms x and y as points 
in the Euclidean plane, the associated computed absolute value 
of the difference of the logarithms of the hit count percentages 
of x and y, determines the similarity between the terms x and 
y.  

TABLE I.   

COMPARISON OF SEMANTIC SIMILARITY OF HUMAN RATINGS AND BASELINES 
ON MILLER AND CHARLES' DATASET WITH DFASSV 

The distance measure shown in Table II depicts the 
relatedness of the terms in question. Table I on the other hand, 

Word Pair M&

C 

Web 

Jaccar

d 

Web 

Dice 

Web 

Overla

p 

Web 

PMI 

Proposed 

DFASSV 

cord-smile 0.13 0.102 0.108 0.036 0.207 0.756 
rooster-
voyage 

0.08 0.011 0.012 0.021 0.228 0.828 

noon-string 0.08 0.126 0.133 0.060 0.101 0.524 
glass-
magician 

0.11 0.117 0.124 0.408 0.598 1.399 

monk-slave 0.55 0.181 0.191 0.067 0.610 0.389 
coast-forest 0.42 0.862 0.870 0.310 0.417 0.055 
monk-oracle 1.1 0.016 0.017 0.023 0 0.457 
lad-wizard 0.42 0.072 0.077 0.070 0.426 0.400 
forest-
graveyard 

0.84 0.068 0.072 0.246 0.494 1.258 

food-rooster 0.89 0.012 0.013 0.425 0.207 1.778 
coast-hill 0.87 0.963 0.965 0.279 0.350 0.248 
car-journey 1.16 0.444 0.460 0.378 0.204 0.865 
crane-
implement 

1.68 0.071 0.076 0.119 0.193 0.418 

brother-lad 1.66 0.189 0.199 0.369 0.644 0.970 
bird-crane 2.97 0.235 0.247 0.226 0.515 0.051 
bird-cock 3.05 0.153 0.162 0.162 0.428 0.024 
food-fruit 3.08 0.753 0.765 1 0.448 0.223 
brother-monk 2.82 0.261 0.274 0.340 0.622 0.966 
asylum-
madhouse 

3.61 0.024 0.025 0.102 0.813 0.945 

furnace-stove 3.11 0.401 0.417 0.118 1 0.180 
magician-
wizard 

3.5 0.295 0.309 0.383 0.863 0.638 

journey-
voyage 

3.84 0.415 0.431 0.182 0.467 0.238 

coast-shore 3.7 0.786 0.796 0.521 0.561 0.411 
implement-
tool 

2.95 1 1 0.517 0.296 0.838 

boy-lad 3.76 0.186 0.196 0.601 0.631 0.271 
automobile-
car 

3.92 0.654 0.668 0.834 0.427 0.975 

midday-noon 3.42 0.106 0.112 0.135 0.586 0.855 
gem-jewel 3.84 0.295 0.309 0.094 0.687 0.027 
Correlation 1 0.259 0.267 0.382 0.548 -0.27 77 



was used mainly for the purpose of comparison in order to 
indicate different semantic similarity measures from 
previously-proposed methods compared to those of the 
proposed DFASSV method. This was done to provide a clear 
picture of the performance and accuracy of DFASSV. 

From Table I, the first   column shows the word pairs used 
and column two indicates the ratings from Miller and Charles. 
Columns 3 to 6 also used for comparison show the ratings 
from previously proposed sematic similarity methods and the 
last column depicts the equivalence similarity measure 
computed using the proposed DFASSV. For example, the 
word pair ‘gem-jewel’ (See Table I) with a similarity measure 
of 3.84 from Miller and Charles and 0.027 from the proposed 
DFASSV clearly depicts the accuracy of DFASSV. This is 
also depicted in the other columns and indicates a better 
performance than that of some of the previously proposed 
methods. See Figure 3 for a graphical representation of the 
Table I results. 

 
Figure 3: Comparison graph of the semantic similarity ratings and baselines on 

Miller and Charles’ dataset with DFASSV (See Table I). 

B. Digital Forensics Terminologies 

In Table II, a part of the experimental findings is presented 
using the digital forensics domain terminologies. Each term 
enclosed in double quotes " " is used as a single Google search 
term denoted in Table II as f(x) and f(y) respectively. The 
computed DFASSV(x, y) using equation 16 therefore shows 
the semantic similarity measures obtained to ascertain the 
performance of the DFASSV method with the human-
perceived meaning of the terms. The authors have no 
knowledge of other experiments of this kind in the digital 
forensics domain that can be used as a baseline to judge the 
performance of DFASSV. This is, therefore, a novel approach 
of using a Web search engine to determine the semantic 
similarity of terms in digital forensics.  

The selected terms used are: ‘digital evidence’, ‘digital 
forensics’, ‘electronic evidence’, ‘digital and multimedia 
evidence’ [33] and [34] among other terms. The authors found 
that these terms are mostly used in discussions that involve the 
digital forensic investigation process and also in the 
accreditation of digital forensics laboratories, hence the 
motivation for the experiment indicated in Table II. In all the 
experiments conducted, DFASSV showed remarkable results.  

To determine the semantic similarity measure of the terms 
as shown in Table II, the proposed DFASSV was used in all 
our experiments. The first two columns of Table II shows the 
digital forensics terms used for the experiments and their 
equivalent similarity measure indicated in the last column. 
Using the results in Table II, a random interview was 
conducted to a few digital forensics researchers and their 
understanding of these terms seemed to agree with the results 
of the proposed DFASSV method.   

 
Digital Forensics Terms Computed 

DFASSV(x, y) f(x) f(y) 

Digital evidence Electronic evidence 0.059217 
Digital forensics Digital evidence 0.431534 
Digital forensics Electronic evidence 0.490752 
Electronic evidence Digital and multimedia 

evidence 
1.833840 

Digital evidence Digital and multimedia 
evidence 

1.893057 

Digital forensics Digital and multimedia 
evidence 

2.324592 

Attacker Adversary 0.357051 
Cracker Attacker 0.361608 

TABLE II.   

SEMANTIC SIMILARITY RATINGS  OF DIGITAL FORENSIC TERMS BASED ON 
DFASSV 

In the case of a digital forensic investigation for example, 
DFASSV can be used to determine the usage of terms where a 
similarity measure closer to 0 means that the two terms are 
closely related in meaning. The terms ‘Digital evidence’ and 
‘Electronic evidence’, for example, with a similarity measure 
of 0.059217 indicates that they can be used interchangeable 
without causing confusion to the stakeholders. On the other 
hand a semantic similarity measure far from 0 would mean 
that the two terms are not closely related in meaning and 
therefore, one cannot replace the other. For example the terms 
‘Digital forensics’ and ‘Digital and multimedia evidence’ with 
a similarity value of 2.324592 means they cannot be used 
interchangeable. 

C. Application of The Proposed DFASSV Method in the 

Digital Forensics Domain 

The proposed DFASSV method as demonstrated in this 
paper can be used in the digital forensics domain for example, 
to determine the semantic relatedness of terms and also as a 
way towards resolving the semantic disparities that exist in the 
domain. In addition, DFASSV can be used to help determine 
the most relevant and appropriate terminologies to use or 
included for example when building a specific ontology in the 
digital forensics domain. In addition, other future relevant 
undertakings in the digital forensics domain, in the authors’ 
opinion, might as well benefit from applying such a method as 
DFASSV.  

VI. CONCLUSION 
The problem that this paper addressed was that of the ever-

changing technological trends in digital forensics where new 
terms are constantly introduced into the domain and new 
meanings assigned to existing terms. 



In this paper a method was presented to automatically 
calculate a semantic similarity value between any two given 
digital forensics terms, using a new approach. Unlike previous 
methods, the Digital Forensic Absolute Semantic Similarity 
Value (DFASSV) approach proposed in this paper is 
unsupervised. No special background information is needed to 
understand and use this method because it utilises the existing 
bank of information from the Web by simply incorporating the 
hit counts between two digital forensics terms reported by any 
Web search engine. In addition, the authors also found that 
DFASSV is well suited for terminologies that originate from 
within the same domain. 

Though the initial experiments were carried out on the 
digital forensics domain terms, the authors believe that the 
DFASSV method can be extended to other domains as well. 
This is due to the fact that the results of the experiments 
conducted to evaluate this method using the digital forensics 
domain terminologies are remarkable. The results show that 
this approach of measuring semantic similarity between two 
terms significantly outperforms some of the previous proposed 
measures. 

As part of future research work, the authors are now 
planning to conduct an investigation in order to find out 
whether there are existing parameters other than hit counts 
reported by search engines that can be used with DFASSV to 
enhance the accuracy delivered by this method even more as a 
way towards resolving semantic disparities in the digital 
forensics domain 
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