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Abstract—Secure RFID systems should be able to authenticate
individual tags to prevent genuine items from being replaced with
forgeries. Conventional authentication protocols would require
some form of challenge-response exchange with each individual
tag. The extra transaction time needed to authenticate each
individual tag sequentially might not be practically feasible,
especially when readers are required to process an ever increasing
volume of tagged items within a limited time. Our proposal works
towards an approach that allows for multiple tags in a group to
be authenticated simultaneously, as all the tags transmit their
responses to a single challenge at the same time. This results in
a controlled bit-collision pattern that can be used to verify that
all the individual tags in a group are present and genuine.

I. INTRODUCTION

Radio Frequency IDentification (RFID) is expected to serve

as a key component of future ubiquitous computing envi-

ronments, with the technology already used in various e-ID,

payment and supply chain services. As the uses of RFID

have grown the security issues surrounding this technology

have received increasing attention [1]–[3]. One of the primary

security concerns in a suppply chain would be that attackers

could create clones of existing tokens. This could allow them

to replace valuable items in shipments with forgeries, which

would appear like genuine products to the system’s readers. In

this case, authenticating the tags could aid in detecting and dis-

couraging the use of cloned tags. Conventional authentication

mechanisms, however, would require the reader to challenge

each individual tag and wait for a response. Taking the time to

run an authentication protocol with each tag in a high-volume

supply chain system might not be a practical option, especially

if there are a large number of individual tags that need to be

read within a short period of time.

The time taken to authenticate a group of tags would be

significantly reduced if multiple tags could be authenticated

simultaneously instead of sequentially. We propose an au-

thentication protocol contrcution that allows for multiple tags

in a group to be authenticated using a single response, thus

achieving an execution time comparable to that of a transaction

with a single tag. The proposal builds on principles introduced

by cryptograhpic ‘grouping-proofs’ and efficient tag discovery

algorithms. It verifies that the a group is both complete (no tag

is missing) and pure (no tag has been replaced), using only

a keyed pseudo-random function and simple bit permutation

operations. We also provide initial comments on the security

performance and practical implementation considerations of

our protocol.

Fig. 1. Constructing bit-collision patterns with Manchester code

II. BACKGROUND AND RELATED WORK

The idea of cryptographically verifying that a group of items

is complete and pure has been discussed before. Juels first

proposed the notion of a yoking-proof (yoke meaning “to

join together”) in which two tags can prove to the system

that they are both present within the same reader’s reading

range at approximately the same time [4]. The proposal

takes into account that passive RFID tags cannot directly

communicate with each other, so to generate a proof the reader

forwards messages from one tag to the other. Subsequently,

several research papers have suggested improvements to Juels’

proposal, e.g [5], [6]. Bolotnyy et al.presented a general

implementation allowing a proof to be constructed for more

than two tags [7], which was followed by further papers

extending the yoking proof proposal to construct grouping or

so-called ‘co-existence’ proofs for multiple RFID tags, e.g. [8],

[9]. Burmester et al. [10] also presented a security model for

grouping proofs and presented three grouping-proof protocols

that their model showed to be provably secure. There are

numerous further examples of grouping proofs in literature

that are not included here due to space constraints.

Although grouping proofs enable the verifier to check that

the group is complete and pure none of these proposals solve

the transaction time problem. Some grouping proofs are often

described as methods for proving that multiple tags were read

“simultaneously”, but in reality this only means that all the

tags were queried sequentially within a specified time bound.

For example, in a minimalist basic two-tag yoking proof both

tags are within the reader’s range at the same time, but the

reader communicates separately with the two tags [4].



There are several proposals for reliably and efficiently

reading a large number of RFID tags, e.g. [11], [12]. However,

in these proposals a system only really determines if a tag

is physically missing, i.e. a specific unique identifier (UID)

within a group could not be read, and in some case multiple

iterations of a read process is required. In security terms

this is not good enough to differentiate between a real and

a fake tag. The problem addressed in our paper is efficient

authentication. Ideally all the tags in a group should be

authenticated simultaneously using only a single challenge-

response sequence.

In HF systems adhering to the ISO 14443 [13] and ISO

15693 [14] (ISO 18000-3 [15]) standards bit collisions are

used during tag selection. The tokens’ are synchronised and

respond with Manchester-coded data, resulting in observed bit

values and bit collisions, as shown in Figure 1. Determin-

istic bit-collisions have been incorporated into key exchange

protocols [16], [17] and into security mechanisms providing

confidentiality and privacy services by intentionally blocking

tag responses to unauthorised readers [18], [19] but have to

date not been used in authentication schemes. In all these

proposals it is assumed that if a collision is observed then

the attacker cannot determine who sent which bit symbol, e.g.

which tag sent a ‘1’ and which tags sent a ‘0’. In [20] it

is shown that an attacker could in some cases deduce the

responses from two tags contributing to a bit-collision pattern

because of variations in the communication channel of passive

tags. The chances of the attacker successfully using this

method decreases, however, as the number of tags contributing

to the collision pattern increases.

III. USING BIT-COLLISION PATTERNS FOR GROUP

AUTHENTICATION

RFID is widely used in automatic identification and data

capture (AIDC) systems. The identified items can often be

grouped into logical groups, e.g. a set of spare parts for

a specific car or different medicines constituting a patient’s

prescription. In secure tracking applications the system often

has to verify that all the items in the group are still together

and that the items are genuine, i.e. that none of the items have

been lost or replaced. This involves the system authenticating

each tag, which is essentially the verifier issuing a challenge

to each tag and the tag replying with a response that only

it should know. For a large number of items the total time

needed to run an authentication protocol with each tag might

become impractical as the transaction time in RFID systems

are generally limited. For example, RFID-tagged items might

be rapidly moving down a conveyor belt or contained in a truck

driving past the reader, so the tags will only be in the reader’s

field for a short period of time. As a result the time the reader

has to communicate with each tag is restricted and a more

efficient way of authenticating a group of tags is therefore

needed.

Our scheme is based on the basic principle that if n tags

in a group transmit their authentication responses at the same

time this will result in a verifiable bit collision pattern that

represents the authentication response for the entire group. To

explain this further we need to define the bit collision operation

more formally. We denote the collision operation between two

bit symbols, β and β′, β, β′ ∈ {0, 1} as β ∧ β′ and use x to

indicate that a bit collision occurred. The results of β ∧β′ are

as follows:

β β′ β ∧ β′

0 0 0
0 1 x
1 0 x
1 1 1

If two tags transmit 1 and 0 in the same bit slot it will result

in a bit collision x regardless of the values transmitted by any

other tags, i.e. 1 ∧ x = x and 0 ∧ x = x.

In our proposed scheme each tag ti, i = 1 to n, that is

part of the group contains an authentication state si. If all the

tags transmit their authentication states simultaneously then

this will result in a group authentication state S, i.e. S =
s1 ∧ s2 ∧ . . . ∧ sn. The group authentication state S can then

be used to determine if the group is both complete and pure.

If each tag in the group is configured to contribute at least

one bit collision, and all tags cause an equal number of bit

collisions, a verifier can check for completeness of the group.

The verifier simply counts the number of bit collisions that

occur. If there are less than it expects, it knows that either

a tag is missing or a fraudulent tag has caused collisions at

the same time as another tag that is present. If there are also

a suitable number of bit positions where a collision does not

occur than the verifier can check for purity. The verifier checks

in which bit positions the collisions occur. If a bit collision is

detected in a bit position where it was not expected the verifier

knows that a fraudulent tag has failed to calculate in which

bit position it should cause a collision or inadvertently caused

an extra collision because it failed to guess a correct non-

collision value. The verifier therefore knows that the group

has been “contaminated”. For example, if we have four tags

each contributing one collision to a group authentication state

of length 8 the authentication process works as follows:

tags correct missing s4 fake s4
s1 01000011 01000011 01000011
s2 01001001 01001001 01001001
s3 01100001 01100001 01100001
s4 11000001 missing 01010001
S x1x0x0x1 01x0x0x1 01xxx0x1

If the group is complete and pure, i.e. all the tags are present

and have the correct state as shown in the left column, then the

verifier would expect four collisions in bit positions 1, 3, 5 and

7 respectively. If the groups were not complete, for example s4
is missing, there would only be three bit collisions, as showed

in the middle column, and the verifier will detect that a tag is

missing. Similarly, if one tag (s4 in this example) was replaced

with a forged tag transmitting the incorrect state it would be

detected, as the verifier would notice that no collision occurred

in bit position 1 but rather in bit position 4.



A. Authentication State Initialisation and Permutation

The processes of initialising and updating the group au-

thentication state are essential to the correct operation of

our proposal. Tags cannot simply respond with independent,

random responses as that would not represent the group in

a way which would indicate whether the group is complete

and pure. The authentication state must therefore be created

and updated in a controlled manner that preserves the group’s

authentication information. We now examine in more detail

how the initial authentication state S for each tag and the

state permutation function f2 could be constructed.

Group initialisation: For the purpose of proving complete-

ness and purity at least one bit collision must be attributed to

each of the n tags in the group. If this is not the case the

tags that cause no bit collisions could be removed from the

group without affecting the group authentication state. Each

tag should contribute an equal number of bit collisions, which

would allow the verifier to determine how many tags are

missing if the group is found to be incomplete. Consider a

group containing two tags, A and B, contributing one collision

each and two tags contributing two each, C and D. As the

tags are not contributing the same number of bit collisions the

verifier does not know whether the group is missing two tags

(A+B) or one tag (either C or D) if the group authentication

state is found to be missing two bit collisions. A bit collision

should also be paired with a bit value (non-collision) so that

the bit swap operation in f2 (see the following section) always

changes the position of a bit collision, i.e. if a bit pair consisted

of two collisions or non-collisions a bit swap would not cause

a change in the collision pattern. If each tag contributes c
bit collisions, which are each paired with a non-collision bit

value, then the bit length of the group authentication state S
and the individual tags’ states si should be 2cn. To meet all

these criteria, we propose that the sender constructs the tag

group authentication state as follows:

(1) Choose the number of collisions c that each of the n tags

in the group will contribute.

(2) Create a state matrix M with n rows, each containing a

tag authentication state vector of length 2cn and all values set

to 0.

(3) Randomly select c bit pairs, b1, . . . , bc, out of the set of

cn possible pairs. In the first row set the first bit value of each

chosen pair equal to 1, i.e. M1,2bi−1 = 1 for i = 1, . . . , c.
Remove the previously selected b1, . . . , bc from the set, choose

another c pairs from the remaining c(n − 1) pairs and set

the corresponding bit values in row 2 to 1 in a similar way

as before. Repeat until all n rows contain c collisions. For

example, if n = 4 and c = 2 the tags’ authentication states

are set as follows:

Tag states Choosing bit pairs
s1 1000000000001000 1, 7 of (1, 2, 3, 4, 5, 6, 7, 8)
s2 0010100000000000 2, 3 of (2, 3, 4, 5, 6, 8)
s3 0000001000100000 4, 6 of (4, 5, 6, 8)
s4 0000000010000010 5, 8 of (5, 8)
S x0x0x0x0x0x0x0x0

(4) Load each tag with the group ID IDG, group key kg
and set the sequence counter. It would be preferable if the

initial value of the group’s sequence number is randomly

chosen so that the same sequence numbers are not repeated in

authentication transactions with different groups.

(5) Finally, the sender runs the group authentication protocol

with the tags to randomise the values of the non-collision bits

and the positions of the bit collisions before shipping.

State permutation function f2: f2 should be chosen to

satisfy the following property: f2(s1)∧f2(s2)∧. . .∧f2(sn) =
f2(S). The simplest way to do this is to create a permutation

function using XOR, bit swap and shift operations. The bit

swap operation switches the collision and non-collision value

in a bit pair if the corresponding bit in the swap string is ‘1’.

The shift operation bit rotates the entire authentication state

(the bits wrap around). The bit swap and shift operations do

not effect the number of bit collisions or the tag which is

responsible for a specific bit collision, but these operations

do change the positions of the bit collisions. Assuming that

the initial state is created using the method described above

we always shift the string in multiples of 2 (or in bit pairs)

so that a pair always consists of one bit collision and one

non-collision value. This ensures that a bit swap will always

change a collision position.

The XOR operation does not effect the number or positions

of the bit collisions even though it might change the underlying

bit values contributing to the collision, i.e. if a, b, c are binary

bits, then if a 6= b, (a⊕ c)∧ (b⊕ c) = x. This property always

holds because if a 6= b then (a⊕ c) 6= (b⊕ c), which results in

(a⊕ c) ∧ (b⊕ c) = x. The XOR operation’s primary purpose

is to randomly alter the non-collision bit values.

In the protocol, f2 will accept the results of a keyed pseudo-

random function f1. If there are n tags, each contributing c
collisions, then the length of the authentication states (si or

S) is 2cn and there are cn bit pairs, which can be shifted

between 1 and cn − 1 positions. The result of the pseudo

random function can be parsed into three bit strings that define

the state permutation, XOR string (2cn bits), bit swap string

(cn bits) and shift string (ceil(log2(cn)) bits). The pseudo-

random function should therefore yield a result of length 3cn+
ceil(log2(cn)) bits. If a single output of f1 is too short a longer

pseudo-random number could possibly be created by running

the function repeatedly using the previous result as input.

The following example illustrates how the state permutation

function works. If we have four tags with authentication states

equal to

s1 01000011
s2 01001001
s3 01100001
s4 11000001
Sold x1x0x0x1

and the pseudo-random function yields a bit string

0101
︸︷︷︸

Swap

01
︸︷︷︸

Rotate

10100101
︸ ︷︷ ︸

XOR



then we need to swap bit pairs 2 and 4, rotate right by one bit

pair and XOR the result with 10100101.

Swap Shift XOR
s1 01000011 11010000 01110101
s2 01001010 10010010 00110111
s3 01010010 10010100 00110001
s4 11000010 10110000 00010101

Snew x10xx01x 1xx10xx0 0xx10xx1

From the example it can be seen that Snew = f2(Sold) =
f2(s1) ∧ f2(s2) ∧ f2(s3) ∧ f2(s4).

B. Group-Authentication Protocol

This section describes how the group authentication state

operation defined above could be incorporated into a au-

thentication protocol. Our protocol proposal is based on the

following assumptions about the environment of the RFID

system:

• System operation: The system consists of a number

of nodes that track the progress of a group of items,

i.e. a single package or shipment, from its sender to

the intended recipient. The sender, recipient and nodes

could be controlled by different organisations, but a key

management infrastructure is in place that allows the

sender to distribute key material to the verifying nodes

and the recipient. The group verifier, i.e. a node or the

recipient, does not necessarily have the ability to share

information with other verifiers and as a result it should

not require knowledge of previous protocol runs between

the group and other verifiers.

• Security objectives: The purpose of our protocol is

only to prove the completeness and purity of a chosen

group to the recipient and intermediate verifying nodes,

thus preventing a third-party attacker from replacing or

stealing items during shipping. The protocol does not

provide non-repudiation of purity and completeness for

anyone who does not trust the verifying node or recipient.

The sender, recipient and verifying nodes are seen as

trusted entities, who will not reveal key material or create

fraudulent tags/groups.

• Cryptographic primitives: For the purpose of running

the protocol a group of tags, sender, recipient and the

verifying nodes share a dedicated secret group key kg,

a keyed public pseudo-random function f1 and a public

bit permutation function f2. In practice f1(m, kg) would

probably be based either on symmetric encryption, e.g.

Enc(m)kg
, or a hash function, e.g. h(m, kg).

• Grouping process: A group is made up of a number

of related items labeled with RFID tags. A group would

be a number of items physically packaged together as

these must be interrogated together by a single reader.

The sender is responsible for creating a legitimate group

and initialising the tags. The sender will also send the

group ID and a description of the items to the intended

recipient, via a suitable communication channel, to enable

the recipient to identify the contents. If required, tags can

contain additional data, e.g. an item description or serial

number, protected with a key shared between the sender

and recipient, although this is beyond the scope of our

protocol.

Our protocol proposal is shown in Figure 2. As stated

previously, the tags and the verifier share a keyed public

pseudo-random function f1. The tags and the verifier also

share a state permutation function f2, which is described in

more detail in Section III-A. Each tag ti, with i = 1 to n
where n is the number of tags, contains at least a stored current

authentication state sicurrent , a common counter value seq, a

common group identifier IDG and a common group key kg .

The protocol comprises of the following steps:

(1) The verifier signals its intention to start the authentica-

tion protocol by transmitting a Start command. The Start

command could also be used to narrow down the groups

responding, by transmitting a value similar to the Application

Family Identifier (AFI) used by EPC (ISO 18000-6C) and ISO

15693/18000-3 tags.

(2) All the tags simultaneously respond with a group ID IDG,

counter value seq and the number of tags in the group n. If

a bit collision occurs only in seq the verifier knows that a

tag has become unsynchronised, while a bit collision in both

seq and IDG indicates that tags from another group have also

responded. The verifier can use IDG to select, or derive, the

correct group key.

(3) Next the verifier generates a random bit string r and calcu-

lates m1 = f1(r, seq, kg). It then transmits the group ID IDg

of the tags it wishes to authenticate, the bit string r and m1.

All the tags in group IDg now calculate m′

1 = f1(r, seq, kg)
and verify that m′

1 == m1, thereby essentially authenticating

the verifier. The combination of the random bit string r and

seq provides freshness for each protocol run, which prevents

an attacker from replaying previous authentication responses.

(4) If the verifier is shown to be legitimate the tags all

transmit their current authentication state sicurrent , so that the

verifier can learn the current composite group authentication

state Scurrent. This is required for synchronisation between

the group and the verifier as we assume that there is not

necessarily a communication channel between verifiers that

can be used to share the group’s last known state. An exception

is raised if no tags transmit their authentication state and the

protocol information should be reported to the sender. This is

to discourage the ’dummy’ tag attack described within Case 4

in Section IV.

(5) The tags then each update their authentication state using

the state permutation function f2 and sinew = f2(sicurrent ,m2),
where m2 = f1(r, seq + 1, kg). Subsequently, each tag

transmits sinew resulting in a new group authentication state

Snew. If no responses are received from the tags a security

exception is raised.

(6) In the meantime the verifier has calculated S′

new =
f2(Scurrent,m

′

2), where m′

2 = f1(r, seq + 1, kg), so it can

verify that all the tags updated their authentication state

correctly by comparing Snew == S′

new, thereby effectively

authenticating the group.



Ti, 1 ≤ i ≤ n Verifier V

Start

V verifies the Snew == S′

new

V checks the number of collision
bit for completeness, then calcu-
lates m′

2
= f1(r, seq + 1, kg) and

S′

new
= f2(scurrent,m

′

2
)

Calculate m′

1
= f1(r, seq, kg)

Verify that m′

1
== m1

Snew

Scurrent

Secret Key kg

Pseudo-random function f1,
State Function f2

Counter seq
Group identifier IDg

Pseudo-random function f1,
State Function f2

Select/Calculate kg,
Calculate m1 = f1(r, seq, kg)IDg, r,m1

Calculate m2 = f1(r, seq + 1, kg)
Update sinew

= f2(sicurrent
,m2)

seq = seq + 1

IDg, seq, n

sicurrent
= sinew

Fig. 2. Description of the proposed group-authentication protocol

(7) Finally, each tag increments seq and sets sicurrent = sinew .

The verifier also reports the identifier IDg, sequence number

seq, the random bit string r and the new authentication state

Snew to the sender. The sender learns the current location of

the group, i.e. the group is in close proximity to a known

verifying node, and stores the additional information for audit

purposes.

If Snew 6= S′

new fails then a security exception will be

raised and the grouped items could be moved to a secure and

controlled area where each one could be further investigated.

Our proposal has the added advantage that it can authenticate

any subset of the group or even individual tags using exactly

the same protocol steps. For example, if the protocol is only

run with one tag the verifier checks if sinew = f2(sicurrent ) to

determine whether the tag is legitimate. In this case the two

group states are conventional bit strings with no collisions.

IV. SECURITY ANALYSIS

The group authentication protocol is meant to prove that a

group is complete and pure. The condition for the group being

complete is as follows:

• the verifier must observe cn bit collisions in the tags’

authentication states Sold and Snew, where n is the

number of tags in the group and c is the number of

collisions attributed to each tag.

If less than cn collisions are observed it therefore means that

at least one tag must be missing from the group. An attacker

wishing to remove an item, and by implication a tag, from

the group might substitute legitimate tags with devices, which

attempt to replicate the responses of the legitimate tags. For a

group to be pure the following conditions must hold:

• the group must be complete.

• the bit positions of all bit collisions in Snew must be

correct, i.e. these must occur in the expected bit periods.

• the bit values received during the bit periods where no

bit collisions occur must be correct.

If an attacker tries to replace a stolen tag it must ensure that

his fake tag’s bit responses still result in a valid Snew. In

other words, without knowing the group key kg the attacker

must cause bit collisions in the same bit positions as the tag

it replaced. The attacker must also guess the values of the

remaining non-collision bits otherwise his substitute device

would cause additional bit collisions in bit positions where

none are expected.

We consider five attack cases where an attacker attempts

to remove an item from a group of three or more items. In

each case we state the probability pa that the attack will not

be detected. We assume that the attacker knows the value of

the current group authentication state Scurrent, i.e. it observed

Snew during the previous protocol run, but that it has no

knowledge of the group key kg .

Case 1 – Attacker uses a simple tag: The attacker’s

replacement tag functions as a normal tag, i.e. it adheres to

the protocol rules and does not know what the other tags are

transmitting. Although the attacker knows Scurrent this does

not assist him a great deal in calculating Snew as it does

not know which bit collisions are contributed by the tag it

replaced, which bit values need to be transmitted to cause the

bit collisions or what the updated non-collision values will

be. The attacker would need to contribute bit collisions in

the correct bit positions and transmit the correct non-collision

values in order to not introduce extra collisions. To succeed

the attacker essentially needs to guess the right bit values in

all positions where other tags do not cause bit collisions. The

probability of an attack succeeding if the attacker removes

na ≤ n − 2 tags from a group of n tags, each contributing c
collisions, can be calculated as follows:

pa =

(
1

2

)c(n+na)

(1)



If the attacker replaces na = n− 1 tags the attack probability

is given by

pa =

(
1

2

)2cn

(2)

because the single legitimate tag left cannot contribute any

collisions by itself and therefore the attacker would need to

guess all the bit values correctly. We only consider the case

where the attacker removes na ≤ n−2 tags for the remaining

cases.

Case 2 – Attacker uses a quiet tag: The attacker’s replace-

ment tag does not strictly adhere to the protocol but it does

not know what the other tags are transmitting. In this case

the attacker’s strategy is to only transmit bit values in the

positions where it thinks the tag would need to cause a bit

collision. The attacker’s tag stays quiet the rest of the time.

The main benefit to the attacker is that it does not need to

guess the correct values of the non-collision bits, as these are

still transmitted by the other tags, and does therefore not risk

causing extra bit collisions. To succeed the attacker needs to

select the correct bit positions in which to cause collisions and

choose the right bit value that will result in a collision, i.e. the

attacker needs to transmit a different symbol as the rest of the

tags. The attacker first needs to guess which of the bit pairs

contain a collision caused by the tag it replaced. In the case

where the attacker removes na ≤ n− 2 tags from a group of

n tags that each contribute c collisions the probability of this

attack succeeding can be calculated as follows:

pa =

(
cn
cna

)
−1

·

(
1

2

)2cna

(3)
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Fig. 3. Single tag removed if the length of S and si is 96(a realistic response
length for both EPC (ISO 18000-6C) and ISO 15693/18000-3 tokens)

Case 3 – Attacker uses a smart tag: The attacker’s replace-

ment tag does not adhere to the protocol and can observe what

the other tags are transmitting. We assume that the tag can

determine the bit value and prepare its response right at the

start of the bit period, even thought this might be unrealistic

in practice. The primary benefit is that if the attacker wants

to contribute a bit collision it knows the values the other tags

are transmitting and therefore it simply needs to transmit the

alternative value. The attacker can also observe bit collisions,

which could help it to choose the bit positions in which it

causes bit collisions. Obviously, the attacker would not need

to guess the values of the non-collision bits as it could either

choose not to transmit anything or simply learn the correct

value from the other tags. For a group with n tags, which each

contribute c collisions, the probability of this attack succeeding

if na ≤ n− 2 tags are replaced can be approximated by:

pa =

(
(cn+ cna)/2

cna

)
−1

·

(
1

2

)cna

(4)
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Fig. 4. Effect if the number of collisions per tag increases and group size
is constant(n = 8)

Case 4 – Attacker knows tag state and collision positions:

In this case the attacker knows the current authentication states

of the tag it wants to replace and at least two other tags.

This allows the attacker to identify which bit collisions are

contributed by the tag it replaces by comparing its state with

the other tags’ states and seeing what bit values differ, i.e. if the

other two tags have the same bit value and the replaced tag’s

bit value differs it is contributing a collision at that bit position.

This is truly a worst case scenario as this is unlikely to happen

during normal operation of the system. The attacker can only

eavesdrop the group state S, which as a whole does not reveal

much information about individual tag authentication states.

As a result, an attacker would need to be in a position to

observe sinew in protocol runs between the verifying node and

individual tags. For the simple tag scenario an attacker still

needs to guess the bit pair rotation in addition to the non-

collision values and the bit values needed to cause collisions

as these are randomly changed by the XOR operation. The

attacker’s best approach is still to randomly guess the tags’

individual authentication states and therefore the probability

that the attack succeeds is still represented by Equation 1. In

the quiet and smart tag scenarios the attack success probability

increases. Since the attacker knows the bit pairs in which his

tag contributes bit collisions and it only has to guess how

many bit pairs the authentication state is going to rotate and

whether the bit pair values will swap to know in which bit

positions the collisions should be contributed in the updated

group authentication state. For the general smart tag case, with

na ≤ n− 2, the probability of the attack succeeding becomes

pa =
1

cn
·

(
1

2

)cna

(5)



For the quiet tag scenario the attacker also needs to guess the

bit value that will cause the bit collision, so the new attack

success probability can be written as follows:

pa =
1

cn
·

(
1

2

)2cna

(6)
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Fig. 5. Attacker replaces multiple tags in the same group (n = 16, c = 2)

Case 5 – Attacker creates a new group: The attacker

attempts to create a whole new group to hide the fact that

it took an item or multiple items. In this case it has to

guess all the bit collision positions and the values of the non-

collisions within the updated group authentication state S. The

advantages the attacker gains in Case 2 and Case 3 no longer

apply as there are no legitimate tags to observe or rely upon to

transmit the correct non-collision bit values. This means that

the attacker needs to guess the bit position of the collision and

the value of the non-collision bit position in each bit pair. It

therefore has a
(
1
2

)2
chance of guessing each bit pair correctly.

For a group of n tags, with c collisions per tags, the probability

that the attacker successfully creates a new group is therefore

given by

pa =

(
1

2

)2cn

(7)

The effects of the group size, the collisions per tag and

the attacker removing multiple tags on the probability that

an attack succeeds for the different cases are illustrated in

Figures 3, 4 and 5 respectively. The probability for Case 4 in

each figure was calculated using Equation 5 as it represents

the best case for the attacker.

A. Additional Security Comments

Privacy: The use of a fixed group ID does allow for

illegitimate tracking of a group. However, in most cases

privacy becomes a real concern after the user takes ownership.

This protocol is meant for use during shipment, and provides

reasonable item level obfuscation, i.e. Mr A is receiving a

shipment from the chemist versus Mr X is receiving drug Y

and X from the chemist, or Miss Y has received a shipment

from the library rather than Miss B has received books M and

N.

Group keys: Even thought not all RFID devices are cur-

rently tamper resistant, we assume that tags used in this

scheme can reliably store a secret key. Retrieving the key off

a tag compromises the tag’s group, but does not effect other

groups. This should be considered when deciding on group

size and a large set of related tags might be divided in several

groups.

Synchronization: It is not possible for an attacker to

desynchronise the tags simply by interfering with one of the

data exchanges. Once the authentication request received from

the reader in step 3 is verified, the tags will update to a new

authentication state. The new state will be sent to the reader

in the next protocol run and the protocol will essentially self-

synchronise. To advance the sequence number seq the attacker

would need to generate a valid m1, which is not feasible

without knowledge of the group key kg . The attacker could run

a partial protocol execution, up to step 3, to obtain a valid m1

but the verfier woul subsequently raise a security exception if

step 4 is not completed..

Relay Attacks: Relay attacks are very powerful, circum-

venting all application layer security protocols. An attacker

can replace the entire group with a proxy device and relay

communication between the verifier and the removed group.

However, of the attacker only removes some tags the protocol

is somewhat resistant to this attacker needs to provide the

removed tags’ response at the same time as the tags still

present in the group. In an ISO 14443 system this would mean

that an attacker would need to relay data in less than 2.4 µs

[21], which is faster than the 20 µs [22] practically needed in

an optimised attack.

V. COMMENTS ON PRACTICAL FEASIBILITY

The proposed scheme proposed in is intended to operate in

a system where a single reader communicates with a group,

because the reader has to receive the replies from all the tokens

to identify the bit collisions. Some inventory management

systems currently use such an architecture, especially when

accurate read zone control is required to identify items within a

small area, e.g. items moving past on a conveyor belt [23]. This

architecture is likely to be used in applications that identify

items within a specific container or package, i.e. in systems

with items are grouped and could benefit from the proposed

scheme.

The length of the tokens authentication state is limited by

memory and transmitted message length constraints. The num-

ber of tokens that can be activated and read simultaneously by

a single reader might also be limited by practical aspects, such

as the receiver architecture of the reader, the operational range

of the reader and the number of tokens that can be powered

at the same time from the transmitted carrier. However, this

scheme can stil offer benefits even if the group size is limited.

For example, a pharmaceutical system could be monitoring

containers containing individually tagged blister packs. A

system that needs to process 120 containers a minute, each

containing 15 blister packs, would normally perform 1800

authentication operations a minute and require a reader and

tokens that could execute the required cryptographic functions

in approximately 33 ms. Using the proposed scheme the



system only has to perform 120 authentication operations a

minute and the reader and the token has 500 ms to execute

the required functions. Alternatively, the system throughput

could be increased to monitor 1800 containers every minute

using the same reader and tokens as before.

Although UHF technology is often associated with in-

ventory management there are also numerous such systems

utilising HF technology [24]. In HF systems adhering to the

ISO 14443 [13] and ISO 15693 [14] (ISO 18000-3 [15])

standards bit collisions are used during tag selection and

the receiver architectures of existing readers also allow for

the detection of such collisions. Our scheme requires a tag

that could implement pseudo-random function f1 and the

basic bit permutation function f2. There are a number of

commercial tokens adhering to ISO 14443 and 15693 that

currently implement cryptographic functions of similar or

greater complexity, e.g. NXP Mifare (ISO 14443) and HiTag

(ISO 15693) products. Although commercial UHF tags with

such capabilities do no exist at the moment, there are examples

of experimental passive tags at this frequency that does have

the capability to implement this protocol [25]. It is therefore

feasible that the proposed scheme could be deployed in

inventory management systems using existing technology.

VI. CONCLUSION

In this paper we present a novel group authentication proto-

col that combines application layer cryptographic mechanisms

with physical aspects of the communication channel to verify

whether a group of RFID tags is complete and pure. Multiple

tags can transmit their authentication responses simultaneously

as the verifier uses the resultant controlled bit-collision pattern,

and not the individual responses, to authenticate the tags. Thus,

the verifier need not authenticate each tag sequentially and it

can therefore authenticate multiple tags within a time period

comparable to the time taken to perform a single challenge-

response sequence. This significantly reduces the transaction

time when processing a high volume of items at any specific

reader, which is a realistic problem in RFID systems where

the available transaction time is limited as the result of high

tag throughput. The protocol uses only a keyed pseudo-

random function and simple bit permutation operations, which

is comparable to the cryptographic primitives required by

most grouping proofs and lightweight authentication proto-

cols proposed for the RFID environment. Bit collisions are

already used in anti-collision methods in current systems and

some commercial tokens currently implement cryptographic

functions of similar or greater complexity than those required

in this proposal, making it feasible that the proposed scheme

could be implemented using existing technology. Future work

would investigate the addition of group privacy, the possibility

of new or existing UHF PHY/MAC layers supporting this

scheme, practical implementation on HF and UHF platforms

and experiments to determine the group size that would work

reliably in current off-the-shelf systems.
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