
A Model for Partially Asynchronous Observation of
Malicious Behavior

Mark M. Seeger
Center for Advanced Security Research Darmstadt (CASED)

Department Secure Services
Mornewegstraße 32, 64293 Darmstadt, Germany

Email: mark.seeger@cased.de

Stephen D. Wolthusen
Gjøvik University College

Department of Computer Science
N-2818 Gjøvik, Norway

and
Royal Holloway, University of London

Information Security Group
Egham, Surrey TW20 0EX, UK

Email: stephen.wolthusen@rhul.ac.uk

Abstract—For a non-trivial attack to be successful in com-
promising a target, multiple causally related operations must be
performed. Detecting such potentially unknown sequences is the
core problem in intrusion detection.

In this paper, we focus on the problem of observing attacks
over non-uniform, partially asynchronous event sets. We hence
propose charactering attacks as partially ordered sets, and we
show how these can be detected asynchronously, as will typically
be the case in a modern computing architecture. By extending a
naı̈ve model incorporating subsets of known causal dependencies,
enhanced observation strategies minimizing the number and cost
of observations can be derived. This incorporation of knowledge
regarding constraints on attack causality into observations allows
for notable enhancements in the efficiency of detection. We also
provide a simple example of an application of the model for the
case of an intrusion detection system on a co-processor observing
a host, although the model is intended for arbitrary non-uniform
architectures and concurrent operations.

Keywords-Intrusion detection, asynchronous and partially
asynchronous observation, causality models

I. INTRODUCTION

The security of any host intrusion detection system (IDS) is
limited by the ability of an adversary to compromise the IDS
itself. The IDS must therefore be able to detect and mitigate
attacks before itself becomes compromised. Recent advances
in computer architecture with large numbers of (partially
asynchronous) processing units have, moreover, made the
conventional notion of an IDS questionable: While detection
algorithms operate on a snapshot of observations, attacks may
be ongoing in parallel to the detection and mitigation efforts.

Although it is possible to force synchronization of events
(mainly memory access) in a host system, this is highly
undesirable, raising the necessity of performing observations
asynchronously or minimizing the need for them. Previous
work has sought to characterize the effects of non-uniform
memory architectures (NUMA) by such observations, but
has not been concerned with characterizing the observations
further. In this paper, we seek to describe a model of general
attack characteristics which can be used to optimize observa-
tion strategy. To demonstrate this, we describe a naı̈ve model

of causal but equiprobable asynchronous events, observed by
way of memory access forcing point-wise synchronization,
and we expand this model into an explicit causality model
where event sets are constituted from partially ordered sets.
These sets are also assigned arbitrary probability distributions,
demonstrating a significant gain in efficiency.

The remainder of this paper is structured as follows: Section
II briefly reviews the related work, before we start with the
actual contribution of this paper in Section III, where we detail
our naı̈ve model and our causality model. In order to present
the practical relevance, especially of the latter model, we show
the application of both models in Section IV before we end
the paper with a conclusion and an outlook in terms of current
and future work in Section V.

II. RELATED WORK

Lee et al. propose an algebraic model for describing causal-
ity interfaces between actors, capable of, for instance, reveal-
ing causality loops, given that each actor is defined using a
Turing-complete language. Schwarz [1] focuses on causality in
distributed computations and presents a corresponding notion
which is applicable in distributed, asynchronous systems.
While not aimed at information security, his work covers some
of the most important properties needed by an observer in
order to reliably obtain the status of a distributed computation.
That is, for instance, taking into account that “every cause
precedes its effect”.

Lamport’s happened before relation1 [2], written as →,
provides an intuitive definition for the case of partial orderings
in distributed (as well as in asynchronous) systems; this can
also, however, be extended to total orderings. Even though
Tarafdar and Garg [3] describe the happened before relation
as “the best possible approximation of real time order that
one can make in a message-passing distributed system without
external channels”, they also claim that it is the wrong
model for expressing and describing potential causality. To

1Also used by [1].



this extent, they propose to use the potentially caused relation,
written as

p
↪→.

A related modeling approach to the one proposed here was
described for security protocols by Backes et al. [4]. It relies
on a finite graph (referred to as a causal graph) to express
causality between events. Whilst [4] is only applicable to
cryptographic protocols, it demonstrates the utility of relying
on causality as an abstraction when reasoning over security
properties. While many IDSs incorporate fixed causal models,
such as rule sets, graphs, or automata, the more general case
has not been fully explored for this application. However, King
et al. [5] described a causality-based intrusion detection system
(CIDS) incorporating network- and host-based alerts, reason-
ing about their severity by interpreting the causal dependency
between network events (i.e., packets) and host events (i.e.,
systems calls). As a result of this, CIDS is able to reduce the
number of false-positives, giving each alarm more significance.
Subsequent work [6] extended this approach in conjunction
with existing IDSs to provide causal relations for suspicious
host- and network-based states and events.

Ning et al. [7] propose the correlation of IDS alerts in
order to construct attack scenarios. They tested their formal
framework using the DARPA dataset from 2000 and report a
significant reduction of the false alert rate. In contrast to [7],
we do not rely on alerts generated by third-party applications
as we focus on low-level data elements being the subject of an
subversion attempt rather than services. Also, our definition of
an attack (scenario) is more finely-grained (i.e., [7] correlate
several service attacks while we correlate several data element
attacks).
Alert correlation as such is the subject of Cuppens and Miège
[8], and Benferhat et al. [9]. Both works focus on the reduction
of alerts generated by an IDS. In this context, our work could
be seen as the mechanism which generates such alerts, not
based on malicious network traffic but on a set of critical host
based data elements.

The recognition of an intruder’s intent is discussed by
Cuppens et al. [10] and Wu et al. [11]. The former focus on
the reduction of alerts presented to a network administrator,
while we focus on the reduction of observation frequency as
such, keeping the detection probability as high as possible. The
latter apply the Dynamic Bayesian Network approach to model
uncertainty, while we apply the noisy-or model to incorporate
noise (i.e., uncertainty), and we focus on a manageable amount
of host side elements rather than large amounts of intrusive
data.

Very recently, Albanese et al. [12] published their work
presenting a scalable analysis of attack scenarios. They analyze
network infrastructure in order to reveal the dependency of
available services. Based on the importance and dependency
of network components and services, a dependency graph is
constructed which is used later on for constructing (proba-
bilistic) attack graphs. In contrast to [12], who rely on known
vulnerabilities (i.e., known exploits) rendering it impossible
to detect yet unknown attacks, we focus on loosely coupled
data elements which may be attacked during even unknown

Description of Assumption Naı̈ve
Model

Causality
Model

Uses the happened before relation → ! %

Uses the potentially caused relation
p
↪→ % !

Causal dependency between attack sets % !

Uniform distribution of attack probabilities ! %

Maximum detection probability ! %

Maximum performance degradation on the host ! %

High false-positives rate ! %

Observation succeeds always ! %

An observation attempt can be suppressed % !

Legitimate changes of value can happen % !

Table I
COMPARISON OF ASSUMPTIONS INCORPORATED INTO EACH MODEL.

subversion attempts. Furthermore, as our model does not focus
on the analysis of vast amounts of data, we do not need
algorithms that “can process between 25 and 30 thousands
[sig!] alerts per second” [12].

III. OBSERVING PARTIALLY ORDERED ATTACK SETS

Section III-A shows a naı̈ve model capturing the worst-case
scenario in terms of observation frequency and performance
degradation due to coprocessor-triggered host observations
when studying modeling outcomes. In contrast to this, Section
III-B presents an explicit causality model. Here, we apply
partially tailored versions of well-known models in order to
incorporate our assumptions. This results in only a moderate
decrease of detection probability whilst at the same time
reducing the performance impact.

We focus our attention on a finite POASET (i.e., par-
tially ordered attack sets) of shared host-side data elements.
We assume an attacker needs to inevitably tamper with all
dei ∈ POASET ; i = 1, ..., n in order to complete his
malicious intentions, which may either target the host system
as such or the in previous publications (cf. [13] and [14])
proposed off-host host observation mechanism. Formally, we
define αj = {dei, ..., dem} ⊆ POASET ; 1 ≤ m ≤ n to be
attack sets, where each αj consists of at least one dei. No
further assumptions other than partial ordering are made for
the events constituting attacks.

In practice, the exact content of the POASET depends on
parameters such as observation goal (e.g. privilege escalation)
and type of system. Despite this, in order to achieve his ma-
licious goal, an attacker must tamper with the full POASET
and is thus confronted with the problem that some of the
concerned data elements depend on others. Therefore, he must
build attack sets which have to be tampered with in order. This
fact highly limits an attacker’s possibilities when choosing
his course of action, and it leaves room for causality based
observations (cf. Section III-B).

Table I details the different assumptions made for each
model, with respect to the performance degradation caused
on the host when applying it.

A. The Naı̈ve Model

The naı̈ve model makes no explicit assumptions regarding
certain data elements and their likelihood of becoming the



subject of an attack, nor does it assume any causal dependency
between attack sets. It presents the worst-case scenario in
terms of observation frequency and performance degradation
and validates the assumption that modeling causal dependency
between data elements is likely to reduce the loss of perfor-
mance.

While the set of all attack sets A =
⋃k

j=1 αj forms a partial
order fulfilling the happened before relation [2], each αj itself
does not represent an order of any kind. The happened before
relation defines – among other – that if αj is attacked before
αj+1: αj → αj+1 and if αj → αj+1 and αj+1 → αj+2:
αj → αj+2. Obviously, → is transitive.

In other words, an attacker may freely decide in which order
he wants to alter the data elements within each attack set αj .
This gives him

∑
k
j=1 |αj |! possibilities to do so, presuming

that he alters each data element only once. He must, however,
finish the attack against αj before he can attack αj+1.

This confronts the observer with two extreme cases where
α1 ≡ POASET and where |αj | = 1. We deduce from the for-
mer that an attacker has |POASET |! possibilities to complete
his attack while the latter extreme represents full serialization.
Since any attack will be composed of loosely coupled attack
sets, and because of the constraint that these sets have to be
executed in order, any detection mechanism faces the problem
of the inability to be one step ahead of the attacker. That is,
the full POASET has to be observed according to the busy-
wait approach and at maximum observation speed, which is
not efficient due to the performance degradation this causes on
the host-side [15]. This fact already implies that any reasonable
assumption made with respect to a causal dependency between
attack sets is likely to reduce the impact on the host-side,
as target-oriented observations can be performed (cf. Section
III-B).

As shown before, an attacker can freely choose the order in
which he alters the data elements within attack sets, while at
the same time being restricted by the happened before relation
with regard to the execution of data elements belonging to
different attack sets. Once the attack sequence is determined,
the probability that a specific dei within the targeted αj will
be attacked (assuming uniform distribution) is:

P (dei|αj) =
1

|αj |
(1)

The existence of attack sets clearly limits an attacker’s alterna-
tives for achieving any malicious goal. If the number of attack
sets and their composition would be visible to an observer,
targeted and ordered observations would be possible. Unfortu-
nately, the existence of these sets is not visible to anybody but
the attacker himself. Without any further assumptions being
made, an observer is therefore always confronted with the
problem of observing all data elements of the POASET with
equal frequency. As no assumptions about causal dependency
between attack sequences have been made, each data element
is equally likely to be subject of an attack at point in time t0;
i.e., the starting point of an attack:

P (dei|t0) =
1

|POASET |
(2)

We note that this is of particular interest for multiple concur-
rent scheduling entities (as is the case in multi-core, multi-
processor architectures) and denote AP = {ap1, ..., apN} to
be the set of entities (processors) used by the attacker. In the
worst case, from a security point of view, an attacker can
utilize all processors to capacity by assigning each processor
a new data element to work with as soon as the work with the
former data element has been finished. Following this schema,
rather than having several processors alter one data element
in parallel, limits the need of inter processor communication,
reduces forced synchronizations, and is therefore faster.

For simplicity, we assume that each alteration targeted at
each data element requires an equivalent amount of processor
cycles and that attacking a data element costs as much as
observing it. Hence, the abstract2 time the attacker needs to
accomplish his goal is given by the maximum number of data
elements to be processed by a single processor:

tattack =

⌈
|POASET |
|AP |

⌉
(3)

As one data element cannot be split over several processors,
the result is mapped to the smallest subsequent integer (i.e.,
ceiling).
Alterations of data elements can be detected if the observation
mechanism is able to observe dei before and after it has
been attacked, and the data read during both observations
differ3. While, due to our assumptions, an analogous equation
accounts for the time needed to observe all data elements
(i.e., tobservation), we are interested in gaining the maximum
probability of detecting an ongoing attack. The probability to
do so is 1 if we are able to observe the set of all data elements
within the POASET in less than the time the attacker needs
to alter one data element dei ∈ POASET . This correlation
can be expressed by writing:

tobservation <

⌈
tattack

|POASET |

⌉
(4)

Clearly, Equation 4 is a simple model leaving aside any causal
dependency between data elements and assuming uniform
distribution of attack probabilities. Also, employing this model
would cause a high false positive rate, as even legitimate
changes to any dei ∈ POASET would be treated as an
attack. Furthermore, since data elements cannot be spread over
processors, altering one data element exclusively and altering
up to |AP | independent elements in parallel consumes the
same amount of time.

With no further assumptions made, the likelihood of be-
ing attacked is the same for all data elements within the
POASET . We have therefore shown that, for maximum
detection probability, an observer mechanism must be much
faster than the processors used for attack. This is neither
a surprise nor a problem in reality: Coprocessors such as
modern GPUs are able to operate much faster than modern
CPUs. Hence, the problem is not the speed as such but the
performance degradation high-speed bulk observations cause

2The concrete time depends on the actual processor speed.
3For simplicity, we assume that the observation results are not stored.



on the host-side.
We define the performance degradation D to be maximum

(i.e., 1) if Equation 4 is fulfilled:

P (D = 1|tobservation <
⌈

tattack
|POASET |

⌉
) = 1 (5)

Below, we present the causality model, incorporating resilient
assumptions regarding the success probability of an observa-
tion as well as possible causal dependencies between attack
sets. This reduces performance degradation whilst maintaining
acceptable detection probability.

B. The Causality Model

In the previous section, we have associated each data
element dei ∈ POASET to have the same probability of
being the first attack target (cf. Equation 2). Also, we have
assumed that an observer has no knowledge about the sequence
according to which an attacker will aim at a specific dei, nor
that he knows anything about the correlation between different
data elements.

For the causality model, we allow further assumptions to
be made but limit our attention to causality chains, despite the
fact that more complex relations between sets of data elements
may be possible. As we do not know the exact course of any
attack, our assumptions are probabilistic in type.

The discussion up to this point has tacitly assumed that
costs are equal for each event observation. However, this is
not desirable for a NUMA architecture with different memory
pathways, where each of them possibly has a different priority.
As a result, not every attempt to observe a data element
is assumed to be successful. This is intrinsic to our copro-
cessor/host combination (i.e., a NUMA architecture) which
imposes different priorities on concurrent memory accesses
depending on their source.

We distinguish between two sets of memory pathways,
being H , the ones triggered by the host itself, and C, the ones
triggered by a coprocessor. Each memory pathway hs ∈ H
and ct ∈ C, respectively, is associated with a priority (i.e.,
ps and pt). With respect to an operation on dei, H and C
form a partial order over the happened before relation, such
that ps ≥ pt ⇒ hs → ct. Whenever this relation is true for
any two competing memory pathways hs and ct, we regard
the observation as failed. For simplicity, we postulate that
the set of memory pathways follows a binomial distribution.
Therefore, assuming host-triggered events to have a higher
priority, the probability of a successful observation can be
expressed as follows: Let p = |C|

|C
⋃

H| . Then:

x̂i = B(x|p, n) =
(
n

x

)
px(1− p)n−x (6)

where x denotes the number of possibly conflicting memory
pathways, p, the ratio between coprocessor and host-triggered
events targeting a certain data element, and n, the number of
successive observation tries.

Thus, x̂i gives us the probability that exactly x memory
pathways can successfully observe data element dei without
being overridden by a host-triggered memory pathway. While
parameter x serves as a lower bound, we are in fact interested

in the probability that at least x memory pathways can be
used unrestrictedly. This is obtained by applying Equation 6
to all values w = t, ..., n:

X̂i =
∑

n
w=t

(
n

w

)
pw(1− p)n−w (7)

The smaller X̂i is, the lower the probability that we can detect
a change in value at dei while an attack is ongoing, as this
is the probability that we can observe a given data element
without being suppressed by memory pathways triggered by
the host. We refer to X̂i as noise (i.e., λi) and make use of
the noisy-or model [16] in order to deal with the possibility
that an observation attempt is not successful. In addition to
another memory pathway suppressing our observation, we
have to incorporate a second uncertainty: The probability that
we observe a benign change in value at dei which we cannot
distinguish from a malicious one. With respect to the noisy-
or model, we speak of this factor as a global confidence
probability, denoted as λ0 4.

Since we are interested in the causal dependency between
attack sets, we make use of the potentially causes relation

p
↪→,

proposed by Tarafdar and Garg [3] who describe it as a relation
capable of expressing the connection of two events not sharing
a local clock while at the same time having the possibility
of one causing the other. In our case, we say that Om

j and
Om

j+1 are two observations of malicious changes that fulfill the
happened before relation (i.e., Om

j → Om
j+1). Furthermore, if

the changes observed have the potential to cause other data el-
ements to change in value, then {Om

j → Om
j+1}

p
↪→ Om

j+2 and

if {Om
j → Om

j+1}
p
↪→ Om

j+2 and {Om
j+2 → Om

j+3}
p
↪→ Om

j+4,

then {Om
j → Om

j+1}
p
↪→ Om

j+4. Just as in its original form, our
version of the potentially caused relation is transitive.
The probability that a change in value of a subset of the
POASET is malicious can be written as:

P (Om
j |dei, ..., den) = 1− ((1− λ0)

∏
n
i=1(1− λi)) (8)

Here, Om
j is a random variable with the probability that an

observation of a change in dei, i = p, ..., n is malicious. λ0 is
the confidence probability, i.e., 1− λ0 is the likelihood that a
benign event causes a malicious change in value. λi is a noise
parameter which is associated with the data being subject to
observation. In cases where we have causal dependency be-
tween data elements, we simply take the result from Equation
8 as a noise-parameter, define a global confidence probability,
and apply the noise model as before for the purposes of this
model.

Ôm
k = P (Om

k |Om
j → Om

l ) = 1−((1−λ0)
∏

l
j=1(1− λj))

(9)
Equation 9 implies that {Om

j → Om
l }

p
↪→ Ôm

k and gives us
a probabilistic answer to the question of how likely it is to
see Ôm

k after we have seen the attack sequence Om
j → Om

l .
With this probability, we can start a targeted observation of the
data elements included in observation Om

k and thus, have the
ability to adjust the observation frequency for each set of data

4λi ∈ [0; 1]; 0 ≤ i ≤ n



elements being observed according to the causalities assumed.
Clearly, prior to applying the causality model proposed

above, a thorough analysis of concerned data elements, their
relation to each other, and possible attack types they could
be used for, is mandatory. Once this has been accomplished,
the model is capable of giving the probability with which
certain observation results cause another one. Thus, this model
not only allows an observation mechanism to be tuned and
therefore, to gain in efficiency, but also provides limited
predictive ability.

IV. PRACTICAL APPLICATION OF PROPOSED MODELS

The following provides a highly simplified instantiation
of the model proposed in the preceding section, again di-
vided into the naı̈ve and causality models. We assume our
set of data elements comprises 12 elements: POASET =
{de1, ..., de12}. We also assume without loss of generality
that an attacker has decided to perform an attack A having
four attack sets α1,...,4 containing the following data ele-
ments: α1 = {de2, de5, de6, de10, de12}; α2 = {de1, de8};
α3 = {de4, de7, de11}, and α4 = {de3, de9}.

A. Application of the Naı̈ve Model

If the observation mechanism were to be aware of the
above defined attack sets, the probability that, e.g., de5 will
be attacked is P (de5|α1) = 1

5 (cf. Equation 1). Without
further assumptions or information, we assume events to be
equiprobable:
P (dei|t0) = 1

12 , i ∈ |POASET | (cf. Equation 2)
Assuming no relation between all data elements within the
POASET and being confronted with an attacker employing 4
processors AP = {ap1, ..., ap4}, at least one processor needs
to process tattack = 12

3 = 4 data elements, which consumes
the corresponding abstract time (cf. Equation 3). In order to
achieve the maximum detection probability, an observation
of the full POASET has to be finished in less than the
time the attacker needs to attack one single data element:
tobservation < 4

12 = 1
3 (cf. Equation 4). While achieving

this would result in a detection probability of 1, presupposing
that the POASET is complete, it would also cause the
maximum performance degradation on the host-side due to
forced synchronisations: P (D = 1|tobservation < 1

3 ) = 1
(Equation 5)

B. Application of the Causality Model

We will now apply the probability model introduced in Sec-
tion III-B in order to show that observing all dei ∈ POASET
with equal frequency is not necessary.

First, we define one host-triggered and one coprocessor-
triggered set of memory pathways5 for each of the 12 data
elements used in the example. Next, we need the probability
that at least two coprocessor triggered memory pathways
(parameter x in Equation 6) can be employed subsequently.
Ideally, the first two memory pathways selected (parameter n)
are of this type, as this implies a failure rate f of only 1 (i.e.,

5For a better understanding, one can think of these sets as sets of threads.

n
x ). The more tries we need in order to select two coprocessor
triggered memory pathways, the higher the failure rate. Table
II shows the results for x̂i, X̂i and fi, i = 1, ..., 12, where
the success factor n is set to 2, 4 and 8, respectively. Table
II reveals the connection between failure rate and success
probability. That is, the more errors we allow, the higher the
probability that we get two coprocessor triggered memory
pathways. Correspondingly, minimizing the failure rate results
in a lower success probability. The correlation between success
probability, the coprocessor/host memory pathway ratio (i.e.,
|Ci|
|Hi| ) and the failure rate is depicted in Figure 1. As we ordered
the results according to the memory pathway ratio, it is clear to
see that we can overcome the failure rate problem by assigning
more coprocessor triggered memory pathways to each data
element (i.e., success probability of up to 80% with a failure
rate of 1 and a coprocessor/host memory pathway ratio of
8.57 : 1). Given the success probabilities, we can now apply
Equations 8 and 9.

We then have to define our observation sets Oj , j = 1, ..., g.
Ideally, we are not only able to define as many observation
sets as the attacker has defined attack sets, but we also
have them including the same data elements. While this may
not be possible in general, we assume the following obser-
vation sets, gained from analyzing selected data elements:
O1 = {de1, de2, de5, de6, de8, de10, de12}, O2 = {de4, de7},
and O3 = {de3, de9, de11}. From our analysis we know that
data elements de3, de9 and de11 (i.e., O3) show a causal
dependency to all other data elements. Therefore, we are
interested in the strength of this connection. We start by
calculating the probability that a change in value within O1

and O2 is malicious (cf. Equ 8). We express the confidence in
the preceding analysis by setting the global parameter λ0 to
be 70% for Om

1 , 60% for Om
2 and 65% for Om

3 . Furthermore,
we use the success probabilities from Table II (success factor
n = 2) as λi (i.e., λi ≡ X̂i). This associates the probability
of successfully performing an observation with the probability
that the observation result is correct:

P (Om
1 |O1) = 1− ((1− 0.70)

∏
i∈O1(1− λi)) = 0.99

P (Om
2 |O2) = 1− ((1− 0.60)

∏
i∈O2

(1− λi)) = 0.68

Since we are interested in the probability that Om
1 and

Om
2 cause Om

3 (i.e., {Om
1 → Om

2 }
p
↪→ Om

3 ) we now apply
Equation 9 as follows:

Ôm
3 = P (Om

3 |Om
1 → Om

2 ) =

1− ((1− 0.65)
∏

j∈Om
1

⋃
Om

2
(1− λj)) = 0.99

This result is to be interpreted as follows: We have made
resilient assumptions based on thorough analysis and thus,
were able to form observation sets. We paid respect to the
existing chance that our observation triggered by a coprocessor
will not succeed due to host-triggered memory pathways of
higher priority and subsequently used the resulting confident
values as noise parameters of the noisy-or model.



x 2 2 2 x 2 2 2 x 2 2 2 x 2 2 2
n 2 4 8 n 2 4 8 n 2 4 8 n 2 4 8

C1 10 C2 8 C3 10 C4 4
H1 5 H2 4 H3 10 H4 8
x̂1 0.44 0.30 0.02 x̂2 0.33 0.30 0.02 x̂3 0.25 0.38 0.11 x̂4 0.11 0.30 0.27
X̂1 0.44 0.88 0.99 X̂2 0.33 0.88 0.99 X̂3 0.25 0.69 0.96 X̂4 0.11 0.41 0.80
f1 1 2 4 f2 1 2 4 f3 1 2 4 f4 1 2 4

Table II
EXTRACT OF RESULTS WHEN APPLYING EQUATIONS 8 AND 9 FROM SECTION III-B TO THE 12 SETS OF MEMORY PATHWAYS FROM SECTION IV; ONE

HOST AND ONE COPROCESSOR SET FOR EACH OF THE 12 DATA ELEMENTS.

2
40 00%

20,00%

40,00%

60,00%

80,00%

100,00%

Su
cc

es
s P

ro
ba

bi
lit

y

Success Probability Graph

1
20,00%

0,11 0,15 0,50 0,50 0,52 1,00 1,08 2,00 2,00 6,67 8,00 8,57
1 1,00% 2,00% 11,00% 11,00% 12,00% 25,00% 27,00% 33,00% 44,00% 76,00% 79,00% 80,00%
2 5,00% 9,00% 41,00% 41,00% 42,00% 69,00% 71,00% 88,00% 88,00% 99,00% 99,00% 99,00%
4 18,00% 28,00% 80,00% 80,00% 82,00% 96,00% 97,00% 99,00% 99,00% 99,00% 99,00% 99,00%

Coprocessor/Host
Memory Pathway Ratio

Figure 1. The results for x̂i, X̂i and fri, i = 1, ..., 12

.

Supposing the reasonability of our assumptions, we are 99%
confident that a malicious change in value within the data
elements covered by O3 is potentially caused by malicious
changes in value of the data elements observed by O1 and
O2. In other words, once we have observed Om

1 and Om
2 , we

can instantly lock O3 and thus, will counter the subversion
attack while it is ongoing with a probability of 99%.
With this result given, it is no longer necessary to observe all
dei ∈ POASET with equal frequency which automatically
influences the performance degradation positively. At the same
time, there is a negligible loss in terms of detection rate (i.e.,
Ôm

3 = 0.99), compared to the busy-wait approach proposed
in Section III-A.

V. CONCLUSION AND FUTURE WORK

We no longer have to be one step behind the attacker.
Therefore, we are not interested in observing a full set of
data elements without reasoning about what an attacker may
do next. To this extent, we presented a model that focuses its
observation on subsets of a partial order over host-side data
elements. By associating each subset with a potential to cause
the next action and applying two slightly tailored well-known
models, we gain the following advantages: first, we are able
to reduce the performance degradation on the host-side due
to less interference. Second, we are able to jump at least one
step ahead of the attacker, locking data elements likely to be
attacked soon.

Our future work will be concentrated on implementing a proof
of concept of the proposed models. We will focus on the
access times of file system parts such as /etc/passwd and
/etc/shadow and correlate the data with the frequency of,
for instance, root logins. This first example is based on the
assumption that after user specific data has been modified, a
rising number of root logins will be the result.

REFERENCES

[1] R. Schwarz, “Causality in Distributed Systems,” in 5th ACM SIGOPS
European Workshop. ACM, 1992.

[2] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Commun. ACM, vol. 21, pp. 558–565, Jul. 1978.

[3] A. Tarafdar and V. K. Garg, “Happened Before is the Wrong Model
for Potential Causality,” University of Texas at Austin: Parallel &
Distributed Systems Group, Tech. Rep., Jul. 1998.

[4] M. Backes, A. Cortesi, and M. Maffei, “Causality-based abstraction
of multiplicity in security protocols,” in CSF 2007. IEEE Computer
Society, 2007.

[5] S. T. King, Z. M. Mao, , and P. M. Chen, “CIDS: Causality Based
Intrusion Detection System,” University of Michigan, Tech. Rep., 2004.

[6] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
intrusion alerts through multi-host causality,” in NDSS 2005, 2005.

[7] P. Ning, Y. Cui, and D. S. Reeves, “Constructing Attack Scenarios
through Correlation of Intrusion Alerts,” in CSS 2002. ACM, Nov.
2002, pp. 245–254.

[8] F. Cuppens and A. Miege, “Alert Correlation in a Cooperative Intrusion
Detection Framework,” in SP 2002. IEEE Computer Society, May
2002, pp. 202–215.

[9] F. A. u. F. C. Salem Benferhat, “Enhanced Correlation in an Intrusion
Detection Process,” in MMM-ACNS 2003. Springer-Verlag, Sep. 2003,
pp. 157–170.



[10] A. M. S. B. F. Cuppens, F. Autrel, “Recognizing Malicious Intention in
an Intrusion Detection Process,” in HIS 2002. IOS Press, Dec. 2002,
pp. 806–817.

[11] P. Wu, Y. Shuping, C. Junhua, and W. Zhigang, “Recognizing Intrusive
Intention Based on Dynamic Bayesian Networks,” in IEEC 2009. IEEE
Computer Society, May 2009, pp. 241–244.

[12] M. Albanese, S. Jajodia, A. Pugliese, and V. S. Subrahmanian, “Scalable
Analysis of Attack Scenarios,” in ESORICS 2011. Springer-Verlag, Sep.
2011, pp. 416–433.

[13] T. R. McEvoy and S. D. Wolthusen, “Using Observations of Invariant
Behavior to Detect Malicious Agency in Distributed Environments,” in
IMF 2008. GI, Sep. 2008, pp. 55–72.

[14] M. M. Seeger and S. D. Wolthusen, “Observation Mechanism and Cost
Model for Tightly Coupled Asymmetric Concurrency,” in ICONS 2010.
IEEE Computer Society, Apr. 2010, pp. 158–163.

[15] M. M. Seeger, S. D. Wolthusen, C. Busch, and H. Baier, “The Cost of
Observation for Intrusion Detection: Performance Impact of Concurrent
Host Observation,” in ISSA 2010. IEEE Computer Society, Aug. 2010,
pp. 1–8.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., 1988.


