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Abstract—Cryptographic two-party protocols are used ubiqui-
tously in everyday life. While some of these protocols are easy to
understand and implement (e.g., key exchange or transmission of
encrypted data), many of them are much more complex (e.g., e-
banking and e-voting applications, or anonymous authentication
and credential systems).

For a software engineer without appropriate cryptographic
skills the implementation of such protocols is often difficult,
time consuming and error-prone. For this reason, a number
of compilers supporting programmers have been published in
recent years. However, they are either designed for very specific
cryptographic primitives (e.g., zero-knowledge proofs of knowl-
edge), or they only offer a very low level of abstraction and thus
again demand substantial mathematical and cryptographic skills
from the programmer. Finally, some of the existing compilers do
not produce executable code, but only metacode which has to
be instantiated with mathematical libraries, encryption routines,
etc. before it can actually be used.

In this paper we present a cryptographically aware compiler
which is equally useful to cryptographers who want to bench-
mark protocols designed on paper, and to programmers who
want to implement complex security sensitive protocols without
having to understand all subtleties. Our tool offers a high level
of abstraction and outputs well-structured and documented Java
code. We believe that our compiler can contribute to shortening
the development cycles of cryptographic applications and to
reducing their error-proneness.

Index Terms—Cryptographic compiler; software engineering;
security protocols;

I. INTRODUCTION

During the last three decades a high number of devices
running software has permeated our society. Even if many
of them are invisible to most of the world, the statement that
“our civilization runs on software” from Bjarne Stroustrup,
inventor of the C++ programming language, is true: besides
software running on laptops or desktop computers, it is also
used in less obvious ways to control everyday devices such as
televisions, airplanes or cash dispensers. Given this ubiquity of
software and the difficulty of obtaining sound implementations
for a given task, it is not surprising that implementation errors
cause costs in the amount of billions of dollars every year [2].

This work was in part funded by the European Community’s Seventh
Framework Programme (FP7) under grant agreement no. 216499 and the
Swiss Hasler Foundation under projects no. 09037 and 10069. For a full
version of this document we refer to [1].

Things get even worse when aiming for realizing security
sensitive tasks such as e-banking or e-voting, or transferring
sensitive data via e-mail or instant messaging over the In-
ternet, where even small errors can lead to serious security
flaws revealing private data. Prominent examples include,
e.g., the widespread OpenSSL library [3], where several
potential threats have been discovered [4], [5], or GPG [6],
an open-source implementation of the OpenPGP standard,
where misoptimizations lead to severe security flaws [7]. One
main reason why such problems can emerge is the skill gap
between cryptographers and programmers. While the former
do not always have sufficient programming skills to obtain
efficient implementations of protocols defined on paper, the
latter often do not have enough mathematical and crypto-
graphic knowledge to understand all subtleties of complex
protocols. This makes the implementation of cryptographic
applications even more time-consuming and error-prone than
that of other systems. Furthermore, because of this skill gap
many potentially interesting cryptographic applications found
in the literature are left unimplemented.

During the last years several attempts to overcoming these
problems have been made, including well-funded projects
financed by the EU- or the US governments [8], [9]. One
strategy all these projects have in common is to automatize
the implementation process of cryptographic schemes, and to
offer extensive compiler support to programmers.

A. Our Contribution

In this paper we present cPLC, a cryptographic
Programming Language and Compiler, for generating
implementations of two-party cryptographic protocols. The
main features of our compiler can be summarized as follows:

• The input language of our compiler is strongly inspired by
the standard notation for specifying protocols used in the
cryptographic community. This allows a user to translate
abstract specifications to input files of our compiler in a
straightforward manner.

• Our compiler natively supports most groups used in ap-
plied cryptography, including residue groups and groups
over elliptic curves. This is in contrast to most previous
compilers, where (similar to C), e.g., all modular oper-
ations have to be implemented explicitly, which results



in illegible terms for complex expressions. Also, features
such as automatic type inference allow one to introduce
variables on the fly without any needs to declare them in
advance. This is again in complete analogy to the standard
way of defining protocols by hand.

• Furthermore, our compiler supports standard procedures
(e.g., AES, SHA2), mathematical algorithms (e.g., pri-
mality tests, random number generation) as well as
complex cryptographic primitives (e.g., zero-knowledge
proofs of knowledge) as basic building blocks, which
takes away the need for corresponding skills from the
software engineer.

• Our compiler comes along with a graphical user interface
(GUI), which supports the user in compiling input files,
setting up communication details, etc., and which also al-
lows for efficiently benchmarking the specified protocol.

• The output of our compiler is fully functional Java code,
which can directly be compiled to binaries.

Overall, we believe that our compiler is the first such tool
which can be used by cryptographically untrained software
engineers to obtain sound implementations of arbitrary two-
party protocols, as well as by cryptographers who want to
efficiently implement their protocols designed on paper.

B. Related Work

A number of tools for specific cryptographic primitives
exist. For instance, a first prototype of a compiler for zero-
knowledge proofs of knowledge was started by Briner [10] and
enhanced by Bangerter et al. [11]. Subsequently, the tool was
redeveloped and extended [12], [13]. Independently from and
parallel to this compiler, Meiklejohn et al. [14] also developed
a compiler for zero-knowledge proofs. Both tools offer a high-
level front end for specifying the intended protocol, but are not
general enough to specify arbitrary cryptographic protocols.
Our compiler uses that of Almeida et al. [13] as a subroutine
for realizing zero-knowledge proofs.

In the field of secure two-party computation [15] a number
of tools are available, e.g., Fairplay [16], VIFF [17] and
TASTY [18]. The generated protocols in either of these tools
are based on Yao’s garbled circuits [19] or on homomorphic
encryption, e.g., [20]. However, protocols solely based on
these techniques are often too inefficient for practical use.
Furthermore, none of these compilers offers an input language
which is abstract enough to be used by non-experts.

Other generic cryptographic compilers have been suggested
by Lucks et al. [21], Kiyomoto et al. [22], Lewis and Mar-
tin [23] and Schröpfer et al. [24]. The input language of
some of these tools [22], [23], [24] is very low-level and
does not offer the level of abstraction required by crypto-
graphically untrained software engineers. Lucks et al. [21]
offer a high level of abstraction, but their compiler does not
produce complete code, but only meta code in which first all
cryptographic primitives have to be instantiated before being
compiled. Moran provides a comprehensive Java library for
rapid prototyping of cryptographic software [25]. Our compiler

combines an abstract input language and fully functional
output.

Finally, a number of compilers which together with the re-
quired implementations output formal correctness certificates
of the generated code exist [13], [23], [26].

An extensive motivation for cryptographically aware com-
pilers was given by Bangerter et al. [27].

C. Roadmap

In Section II we describe the architecture of our compiler
and the graphical user interface. Then, in Section III we
describe the rationals underlying the input language, and we
give some illustrative sample programs in Section IV. Finally,
we briefly conclude in Section V.

II. ARCHITECTURE AND DESCRIPTION

Before describing the input language and features of cPLC
we describe the high-level architecture of the compiler and its
graphical user interface.

A. Architecture

The rough structure of cPLC is straightforward, and is
depicted in Figure 1.
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Fig. 1. High-level architecture of cPLC.

The compiler takes as input the specification of a crypto-
graphic protocol, which is parsed using a parser generated by
the ANTLR Parser Generator [28], [29]. The resulting internal
representation of the protocol is then treated by the main
component, the protocol compiler, which translates the high-
level description of a protocol into a sequence of computations
and commands.

The resulting implementation specification is passed to a
backend. Currently, only a Java backend is available. How-
ever, the modular design of the compiler allows for an easy
incorporation of backends for other target languages as well.
The files generated for each party are then compiled into byte
code using a standard Java compiler.

To achieve a high level of abstraction, cPLC also offers
zero-knowledge proofs of knowledge as a basic cryptographic



primitive. Various compilers for this primitive have already
been proposed in the literature and we use that of Almeida et
al. [13] as a sort of plug-in. That is, whenever cPLC encounters
a specification of such a proof, it produces an interim output
which serves as an input to the zero-knowledge compiler (a so-
called PSL-file), which in turn outputs a Java implementation
of the proof. This code is then integrated into the Java
output of cPLC to obtain one single implementation of the
overall protocol. Not implementing a zero-knowledge compiler
ourselves was one major design decision resulting from the
wish to avoid extensive re-implementations of functionalities
already existing in other tools.

Except for the graphical user interface, all components of
our compiler have been realized in Python 2.5. However, cPLC
can be used without having a Python interpreter installed using
Jython [30] which is a pure Java implementation of the Python
language specification and supports most language features
from Python 2.5, especially those needed by our compiler. It
compiles Python code to Java byte code which can run directly
on a Java virtual machine. The GUI is realized in Java and
built with Netbeans Swing GUI Builder [31] and the Swing
Application Framework.

B. Graphical User Interface

cPLC could, in principle, be used as a command-line tool,
but for improved user friendliness we also implemented a
rather self-explanatory GUI. The major advantage of the GUI
is giving all of cPLC’s functionality the same look and feel.
It can be used to specify and compile protocols and to edit
configuration and input files. The target audience of cPLC
are software engineers who normally are used to integrated
development environments. We believe that having all the
functionality for cryptographic protocol design and implemen-
tation integrated into one GUI facilitates the uptake of cPLC
in practice.

Fig. 2. Main panel of the graphical user interface of cPLC.

When starting cPLC, the GUI shown in Figure 2 opens.
This is the main panel of the GUI that can always be re-
opened by clicking (a). All protocols which have already been
implemented earlier can be chosen from the upper drop-down
box (e), whereas the lower one (f) allows one to choose the
party whose code one wishes to execute. The implementation
can then be started by clicking the play button.

When the implementations of all participants of a protocol
are running, the protocol run starts automatically. In fact, all
implementations of protocol participants always execute im-
mediately. However, they only execute as far as possible, i.e.,
until they require inputs from the other party to continue. This
synchronization happens via send/receive events implemented
as sockets.

Input data to the protocol run can either be hard-coded in
the input file, which, however, is very inflexible if the protocol
is to be used in practice. Therefore, it can also be passed to
the protocol via a separate input file. This input file can be
edited in the text box of the GUI by selecting the input panel
(b). It essentially consists of unformatted text where each line
contains the value of a single variable. That is, to define an
input n one may just add a line

n=1234567890
to this text file. The order of the inputs is irrelevant. As

some protocols show different behavior for users who know
a certain variable, and for those who do not, unknown inputs
can be indicated by

n=Unknown .
If one wants to specify a new protocol, i.e., a protocol which

was not available in the drop-down box (e) on startup, or to
edit an existing one, one can use the editor panel (c). The
syntax and rationals of the input language will be discussed
in detail in the following sections.

By default, all protocol participants run on IP address
127.0.0.1 (localhost). This is useful for first test runs of the
implemented protocol, but not realistic for real-world scenarios
where both participants will run on different machines with
different IP addresses. These can be specified in an XML
configuration file which can be edited in the configuration
panel (d). Besides the IP address, also the communication port,
and logging options for debugging and benchmarking can be
specified there.

1) Integrated Benchmarking Mechanism
Typically there are numerous protocols which can be used

for a specific purpose, the efficiency of which might vary
significantly. Thus, cPLC also allows protocol designers to
easily obtain benchmarks for their protocols. To do so, they
just have to tick the respective box in the GUI. They are then
asked to enter the number of repetitions of the protocol to be
benchmarked.

Fig. 3. Typical benchmarking results.

Figure 3 shows the results of a typical benchmarking



procedure for the Diffie-Hellman key exchange protocol [32].
As can be seen, the first run of the protocol requires much
more time than all subsequent runs. This is due to the way Java
loads classes: namely, mathematical or network communica-
tion classes are only loaded when they are first used, and not
on startup. Thus, the duration of the first protocol run always
contains an almost constant overhead for this class loading.
However, when a cryptographic protocol is used as a building
block of a larger applications, most classes will already be
available when the protocol is started. Thus, when comparing
the efficiency of different protocols, one might most often want
to ignore this first (less efficient) protocol run.

2) System Requirements and Installation
Our tool suite only requires a Java runtime environment and

a Java compiler version 6 or higher which are freely available
on the Internet and already installed on most machines. To
make the compiler as easy to use as possible it does not require
any installation but can just be started by double-clicking the
main jar-archive.

III. INPUT LANGUAGE AND FEATURES

In the following section we briefly describe the rationals
underlying the input language of our compiler on a high
level, and the core functionalities which are natively supported.
Concrete sample programs will then be given in Section IV,
and a formal specification can be found in Appendix A.

a) Operators: All standard operators on variables are
available in our input language. In particular this includes stan-
dard arithmetical operators (e.g., a%m for amodm), bitwise
operations (e.g., bitand), and concatination (concat).

b) Conditionals and Loops: As in other programming
languages, if/else branches are available. Also, for and
while loops are available, where the former can be used to
iterate over numeric ranges as well as arrays.

c) Data types: Our compiler distinguishes three types
of integers: besides basic signed integers (Int), it also
allows one to specify elements lying within some interval
[a, b] (Interval(a,b)), or primes of a given bitlength k
(Prime(k)). Furthermore, as cryptography makes extensive
usage of finite groups and fields, the most commonly used
groups are natively supported as well. That is, a command like
ZmodMul(p) g defines an element g ∈ Z∗

p, and similar for
ZmodAdd(q) x. Also, because of their practical relevance,
Galois fields with 2m elements can be specified by GF2(m).

For elliptic curves, different implementations are available.
On the one hand, a generic implementation allows one to
specify an arbitrary elliptic curve over Z∗

p in Weierstraß form
(i.e., y2 = x3 + ax + b) as EC(p,a,b,gx,gy), where
(gx, gy) is a generator of the group required for drawing
random elements. Alternatively, those curves suggested by
Brown [33] are already predefined and can be called by their
name, e.g., by EC(secp112r1).

If programmers want to use other groups they can define ab-
stract groups in cPLC, and only have to offer implementations
of the group operations in Java at compile time.

Upon reading values from the input file or receiving data
from the other party, group membership is always checked.
This is consistent to the respective assumption made in most
protocol specifications.

d) Basic Built-In Primitives: The input language of our
compiler natively supports symmetric encryption using the
Advanced Encryption Standard (AES) [34], [35], which can be
invoked by enc(message,key), and similar for dec for
decryption. Furthermore, the Secure Hashing Standard (SHA-
2) [36] can be invoked by hash(message). An optional
second integer parameter allows to specify whether the output
should be truncated to a specific length (default is 512 bits).

e) Zero-Knowledge Proofs of Knowledge: On a high
level, a zero-knowledge proof of knowledge is a two-party
protocol between a prover and a verifier, which allows the
prover to convince the verifier that it knows some secret values
that satisfy a given relation (proof of knowledge property),
without the verifier being able to learn anything about them
(zero-knowledge property) [37]. Such proofs are extensively
used in applied cryptography as they allow protocol designers
to enforce a protocol participant to assure other parties that
its actions are consistent with its internal knowledge state,
e.g., [38], [39], [40], [41], [42].

We therefore also incorporated zero-knowledge proofs of
knowledge as a basic primitive into our compiler, using the
compiler of Almeida et al. [13] as a subroutine. The syntax
for such proofs is very much inspired by the standard notation
introduced by Camenisch and Stadler [43]. For instance,
to prove knowledge of x = logg y one can simply write
zkp("(x):y=gˆx").

f) Benchmarking: As mentioned in Section II-B1 the
GUI offers a checkbox whether or not the overall protocol
should be benchmarked. However, the input language also
offers the feature of benchmarking arbitrary blocks of a
protocol. To this end, the block just has to be encapsulated
between startbm(name) and stopbm(name) for an arbi-
trary string name. The running time of this block will then be
output upon execution of the protocol. The number of blocks
to be benchmarked is not limited by our compiler.

1) Turing Completeness

The main goal when designing the input language of cPLC
was to support the user in describing the single rounds of
a protocol as efficiently as possible by natively offering the
most commonly used primitives, etc. However, we also aimed
for generality, i.e., the user should be able to describe any
computable function in each round, or put differently, the input
language should be Turing complete. This can easily be seen
to be satisfied, as all necessary language elements (input via
the input file, output, loops, branches, etc.) are available, and
neither the number nor the size of variables is limited.

IV. SAMPLE PROGRAMS

After having described the comprehensiveness of the input
language of cPLC in the previous section, we now give some



sample programs illustrating how it can be used to describe
concrete protocols.

Generally, except for if/else blocks and for loops,
which have to be ended by end, line breaks are used as
statement delimiters. All other whitespace is ignored.

A. A Cryptographic “Hello World”-Program

We start with a simple and well-known protocol, namely the
Diffie and Hellmann key-exchange protocol [32]. The standard
way to specify the protocol is illustrated in Figure 4, and the
implementation in cPLC is given by Algorithm 1.

Alice Bob

xa ∈R Zq

ya = gxa ya -
xb ∈R Zq
yb = gxb

yb� K = y
xb
a

K = yxa
b

Fig. 4. Protocol flow of the Diffie-Hellmann key exchange as specified in
most cryptographic publications.

Algorithm 1 Diffie-Hellmann Key Exchange
Input:

2: All:
Prime p, q

4: ZmodMul(p) g
Alice:

6: Bob:
Protocol:

8: Alice:
x a = random(ZmodAdd(q))

10: y a = gˆx a
send(y a)

12: Bob:
x b = random(ZmodAdd(q))

14: y b = gˆx b
K = y aˆx b

16: send(y b)
Alice:

18: K = y bˆx a

Let us now discuss the single parts of the implementation
in more detail. As can be seen, the input file consists of two
blocks. In the Input block (lines 1 to 6) all values given
as inputs to the protocol participants have to be specified. In
the Protocol block (lines 7 to 18) the actual protocol is
specified.

a) The Input Block: At first, the common inputs to both
parties are specified (lines 2 to 4). In this case, two primes p, q
and g ∈ Z∗

p are given as inputs. Remember that in the Diffie-
Hellmann protocol, g is a generator of the subgroup of order
q or Z∗

p.
Next, private inputs to the parties can be specified (lines 5

and 6), which do not exist in our example. However, the two

lines must not be suppressed as they implicitly also define the
names of the parties in the protocol.

b) The Protocol Block: This block is a straightfor-
ward translation from Figure 4. Note that none of the variables
in the whole protocol needs to be declared. For instance,
in line 9 the type of x_a is automatically inferred to be
ZmodAdd(q). Similarly, in line 10, the type of y_a must be
ZmodMul(p). Also, again in analogy to Figure 4, variables
sent from one party to the other can directly be referred to by
the same name. For instance, this is the case in line 14, where
y_a was previously sent from Alice to Bob in line 11. This
avoids the necessity of an explicit receive command, and
helps to keep the protocol specification as compact as possible.

B. More Language Elements

While the Diffie-Hellmann protocol illustrates the basic
functionality of our input language quite well, some concepts
are not used there. We show their usage by some code snippets
in the following.

Algorithm 2 More language elements
Definition:

2: MyGroup(5)
Input:

4: All:
...

6: MyGroup(a,b,c,d,e) g, h
...

8: Protocol:
...

10: Alice:
pw = hash(”A shared secret”,128)

12: cipher = enc(”Some secret message”,pw)
send(cipher)

14: Bob:
plaintext = dec(cipher,hash(”A shared secret”,128))

16:
...

As mentioned in Section III, the user of our compiler has
the possibility to define not built-in groups at the onset of
the input file. This is shown in Algorithm 2: the optional
Definition block (lines 1 and 2) to declare this groups. In
our case, a group type called MyGroup taking 5 constructor
arguments is defined, and can be used like built-in groups
in the following. For instance, line 6 defined elements g, h
in MyGroup parametrized by a,b,c,d,e. Furthermore,
the example shows the usage of the built-in hashing and
encryption primitives. In line 11, pw is assigned the first 128
bits of the hash of some secret shared between Alice and Bob,
which is then used in line 12 to encrypt some secret message
using AES with the 128 bit key pw. Bob decrypts the message
analogously.

Algorithm 3 illustrates the usage of loops and conditional
branches on the basis of the Fiat-Shamir identification proto-
col [44], which allows Alice to prove knowledge of the square



Algorithm 3 Fiat Shamir Identification
Input:

2: All:
n = 553913

4: ZmodMul(n) v = 295502
Alice:

6: ZmodMul(n) s = 43215
Bob:

8: Protocol:
Alice:

10: ZmodMul(n)[100] r, x
for i in Interval(0,99):

12: r[i] = random(ZmodMul(n))
x[i] = r[i]ˆ2

14: end
send(x)

16: Bob:
Int[100] e

18: for e i in e:
e i = random(Interval(0,1))

20: end
send(e)

22: Alice:
ZmodMul(n)[100] y

24: for i in Interval(0,99):
y[i] = r[i]*sˆe[i]

26: end
send(y)

28: Bob:
i = 0

30: while i < 100:
if !(y[i]ˆ2 == x[i]*vˆe[i]):

32: stop(”Verification failed”)
end

34: i = i+1
end

root of v to Bob. It is possible to define default values of inputs
(line 3), which are overwritten if inputs for the respective
variables are specified in the input file.

In line 10 two arrays of 100 elements of Z∗
n are defined.

In contrast to variables, arrays must not be introduced on the
fly to avoid, e.g., different array sizes in different conditional
branches. Then, a for loop (lines 11 to 14) is used to assign
values to the entries of the arrays. In cPLC, array indices
always start at 0. Alternatively, the loop could also iterate
over the entries of an array, see line 18. Lines 30 to 35
show the usage of while loops. Lines 31 to 33 show a
simple conditional construct. Upon reaching a stop com-
mand, the protocol prints the included message and terminates.
Alternatively, the if statement could have been written as
assert(y[i]ˆ2 == x[i]*vˆe[i]).

We stress that using the built-in zero-knowledge primi-
tive, the whole protocol could just have been written as
zkp((s):v=sˆ2).

C. Two Real-World Protocols

We finish this section by giving two real-world protocols.

Algorithm 4 Coin Withdrawal Protocol
Input:

2: All:
Prime(1024) p, q

4: ZmodMul(p) I, g, h, g 1, g 2, d
Client:

6: ZmodAdd(q) u 1, u 2
Bank:

8: ZmodAdd(q) x
Protocol:

10: Client:
zkp(”(u 1, u 2) : I=g 1ˆu 1 * g 2ˆu 2”)

12: Bank:
w = random(ZmodAdd(q))

14: m = I*d
z = mˆx

16: a = gˆw
b = mˆw

18: send(z,a,b)
Client:

20: m = g 1ˆu 1 * g 2ˆu 2 * d
s = random(ZmodAdd(q))

22: mp = mˆs
zp = zˆs

24: x 1 = random(ZmodAdd(q))
x 2 = u 1 * s - x 1

26: y 1 = random(ZmodAdd(q))
y 2 = u 2 * s - y 1

28: z 1 = random(ZmodAdd(q))
z 2 = s - z 1

30: A = g 1ˆx 1 * g 2ˆx 2 * dˆz 1
B = mˆs / A

32: u = random(ZmodAdd(q))
v = random(ZmodAdd(q))

34: ap = aˆu * gˆv
bp = bˆ(s*u) * mpˆv

36: ZmodMul(q) cp = hash(concat(mp,zp,ap,bp,A))
c = cp / u

38: send(c)
Bank:

40: r = x*c + w
send(r)

42: Client:
assert(gˆr == hˆc * a and mˆr == zˆc * b)

44: rp = r*u + v

The first one, i.e., Algorithm 4, stems from an e-cash
scheme proposed by Brands [45]. It is used by clients to
withdraw money from their bank accounts. The protocol starts
with a zero-knowledge proof where a client shows that he
indeed has access to the specified bank account in line 11. The
remainder of the protocol is the withdrawal of a coin itself. We



do not describe the semantics of the protocol in more detail
here, but refer to the original paper [45]. However, it can be
seen that even for complex protocols, reading the specification
in our input language is no more difficult than reading its
specification in a diagram.

In line 36 an explicit typecast has to be performed, as the
type inference strategy of the compiler would define cp to be
an element of Zq , and not of Z∗

q .

Algorithm 5 Entity certification
Input:

2: All:
Int lambda, n

4: ZmodMul(n) a b, g b
Alice:

6: CredentialAuthority:
Int d b

8: Protocol:
Alice:

10: xprime = random(Interval(0,2ˆlambda - 1))
yprime = a bˆxprime

12: send(yprime)
CredentialAuthority:

14: xi = random(Interval(0,2ˆlambda - 1))
send(xi)

16: Alice:
x = xprime + xi

18: y = a bˆx
z = g bˆy

20: send(y,z)
zkp(”(y) : z = g bˆy”)

22: CredentialAuthority:
assert(y == yprime * a bˆxi)

24: cert = (y+1)ˆd b
send(cert)

Our final example, see Algorithm 5, is one of the protocols
from an history-based signature scheme by Bussard et al. [46].
Such schemes can be used to rate the trustworthiness of a
document the author of which wants to stay anonymous. Upon
signing a document, the author has the possibility to include
some information about his history into the signature (e.g., he
was present at some event). The credentials certificating these
facts are issued by some certificate authority. Algorithm 5
shows the initialization protocol, where a new user Alice
sets up her secret value x and receives a certificate cert that
the setup has been performed correctly.

V. CONCLUSION AND FUTURE WORK

We presented a domain-specific language and compiler for
arbitrary cryptographic two-party protocols and demonstrated
their usability on the basis of some real-world protocols. The
tool is easy to use and its input language offers a higher level
of abstraction than those of previous tools.

In our opinion there are at least two points for further

development. First, a generalization to more than two parties
would be useful, and could be reached within a reasonable
amount of work. The main task would be to incorporate a
receiver into the send() command, and to adapt the network
implementations accordingly. Second, currently the compiler
does not support user-defined functions. However, this could
further increase the readability of protocol specifications as
repeatedly used code could be transferred into such a function.
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APPENDIX

A. ENBF Specification of Input Language

In the following we give the EBNF specification of the
input language of cPLC. Note that calls to, e.g., AES,

SHA-2, assertions or printing commands are all treated as
functionCalls, and interpreted at a higher level in the
compilation process. This allows for adding further built-in
functions without having to change the grammar.

cpl: [definition] input protocol;
definition: ’Definition:’ { userGroupDef | userGroupAlias};
input: ’Input:’ {party blockBegin {varDeclaration eos}};
protocol: ’Protocol’ blockBegin {party ’:’ {statement}};
userGroupDef: type eos;
userGroupAlias: variable ’=’ type eos;
type: Identifier ’(’ expr {’,’ expr} ’)’;
list: ’[’ expr {’,’ expr} ’]’;
party: Identifier;
assignment: [type] variable ’=’ expr | arrayDeclaration ’=’
expr | arrayAccess ’=’ expr;
varDeclaration: [type] variable {’,’ variable};
arrayDeclaration: type ’[’ expr ’]’ variable;
arrayAccess: variable ’[’ expr ’]’;
variable: Identifier;
statement: (assignment | arrayDeclaration | varDeclaration
| functionCall | zkpok) eos | controlStructure ;
controlStructure: if | for | while;
if: ’if’ expr blockBegin {statement} ( ’end’ eos elseIfControl
| ’end’ eos elseControl | ’end’ eos);
elseIfControl: ’elseIf’ expr blockBegin {statement} (’end’
eos elseIfControl | ’end’ eos elseControl | ’end’ eos);
elseControl: ’else’ blockBegin {statement} ’end’ eos;
forControl: ’for’ variable ’in’ expr blockBegin {statement}
’end’ eos;
whileControl: ’while’ expr blockBegin {statement} ’end’ eos;
blockBegin: ’:’ [eos];
functionCall: Identifier ’(’ ’)’ | Identifier ’(’ expr {’,’ expr}
’)’;
zkpok: ’zkp’ ’(’ ’”’ ’(’ variable {’,’ variable} ’)’ ’:’ proofGoal
’”’ [’,’ identifier] ’)’;
proofGoal: predicate | proofGoal { (’AND’ | ’OR’) proof-
Goal } | ’(’ proofGoal ’)’
predicate: math ’=’ math;
expr: ’not’ expr | expr (’and’ | ’or’) expr | comparison;
bitXor: ’bitNot’ expr | expr (’bitAnd’ | ’bitOr’ | ’bitXor’)
expr;
comparison: ’!’ math | math (’==’ | ’!=’ | ’>’ | ’<’ |
’>=’ | ’<=’) math;
math: atom | ’(’ math ’)’ | math (’+’ | ’-’ | ’*’ | ’/’ | ’%’
| ’ˆ’) math;
atom: number | functionCall | variable | ’(’ expr ’)’ |
arrayAccess | string | bitXor;
number: ’0’ | (’1’ | ... | ’9’) {(’0’ | ... | ’9’)};
identifier: {character};
character: ( ’A’ | ... | ’Z’ ) | (’a’ | ... | ’z’) | ’ ’ | number;
string: ’”’ {character} ’”’;
eos: [lineComment] [comment] newline {eos};
newline: ’\n’ | ’\r\n’;
lineComment: ’//’ {character} -{’\n’ | ’\r’};
comment: ’/*’ {character | newline} ’*/’;
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