
APPLICATION OF MESSAGE DIGESTS FOR THE
VERIFICATION OF LOGICAL FORENSIC DATA

Pontjho M. Mokhonoana1, Martin S. Olivier2

1Information and Computer Security Architectures Research
Group

Department of Computer Science

South Africa

1pontjho@tuks.co.za, 2martin@mo.co.za

ABSTRACT

A message digest is a fixed length output produced by applying a crypto-
graphic algorithm on input binary data of arbitrary length. If the input data
changes even by one bit, the generated message digest will be completely
different from the original. This is used in digital investigations to verify
that stored digital evidence has not been tampered with.
This technique has been applied successfully on physical disk images because
there is only one continuous stream of data. However, this is not applica-
ble to logical disk images where there is no obvious or standard method of
concatenating the data to produce an output message digest. This paper de-
scribes the difficulties that complicate the computation of a message digest
for logical data. In addition, a candidate process for calculating a verifica-
tion value for computer forensic evidence for logical data, regardless of its
underlying representation is given. This method is presented in the context
of cellphone forensics.

KEY WORDS

Computer Forensics, Verification, Cryptographic Hash, Message Digest



APPLICATION OF MESSAGE DIGESTS FOR THE
VERIFICATION OF LOGICAL FORENSIC DATA

1 INTRODUCTION

Current best practices for dealing with digital evidence advocate that when
evidence is acquired, the first to the last bit of the data on the device be
copied to create a physical disk image [Jansen and Ayers, 2006]. This has
the advantage of allowing the recovery of deleted or partially overwritten
data. The physical image also facilitates the simplicity of the process of the
computation of the associated message digest of that image since the one
way hash is based on a single stream of binary data.

It is however not always possible to obtain a physical image of a device’s
data; this is usually the case when extracting data from Small Scale Digital
Devices [Harrill and Mislan, 2007] such as cellular phones or a Subscriber
Identity Module (SIM) card. In other cases, it is preferable to obtain a
logical image when only the logical data is required. Creating a physical
image makes very little sense since that would add unnecessary additional
processing and storage overheads.

When looking at logical data, the picture gets a little more complicated
since a simple reordering of the logical data items will affect the produced
hash. This complexity of verifying logical data makes it difficult to verify
data retrieved from mobile devices using most of the acquisition methods
[Mokhonoana and Olivier, 2007], since they produce a logical image.

For example, a phone book entry will consist of the name of the person,
their phone number and usually other contact details such as the email or
secondary number. There is no defined order in which such items should
be read meaning that if a hash value were to be computed on that data,
the output produced by different tools on the same content may be different
depending on the order in which the data was read.

To give an idea of how the logical image from a smartphone would look
like, figure 1 is given below. Each of the contact entries could in turn have
the name, surname, office number, mobile number, email as well as other
attributes.

One way to get around this is to compute the hash for each data item in
the logical image. Such a solution has a number of drawbacks:

• It would complicate the process of verifying the authenticity of the log-



Phone Memory

other itemsMessages

MessageN˙Message1Message0

Contacts

EntryN˙Entry1Entry0

Figure 1: Sample Data From a Mobile Phone

ical image since it would increase the algorithmic complexity of com-
paring the hashes.

• If there is a large number of data items in the logical image, the hashes
could take up a large amount of disk space.

• It does not take into account the attributes of the logical data items.
If it does, then there is the question of the ordering and representation
of the attributes.

To solve the above mentioned problems, the Sorted Vector Hashing (SVH)
is porposed in this paper. The goal of the algorithm is to enable the compu-
tation of a hash value based on the logical content of a file rather than just
its binary data. This will facilitate the comparison of the content of different
data items such as an email, even though they are stored in different mail
formats.

The aim of this paper is to present a method for producing a message
digest for a logical image file that also takes into account the attributes of
the data items and the potentially different representations of the attributes.
The method achieves the goal by allowing the message digest computation
to be performed on items at any granular level and putting it together with
a simple algorithm which will be discussed in more detail later in the paper.

2 RELATED WORK

Most of the computer forensics tools employ the use of hashes to verify their
images. However for logical data, different tools use different schemes to
do the verification. EnCase [Guidance Software, 2008a] uses a proprietary
L01 format for the storage of logical data. For that reason, it is difficult to
determine how its verification works.



The Forensic Toolkit [Guidance Software, 2008b], which uses FTK Im-
ager to create images employs the use of AD1 image containers to store logi-
cal data. The format does not have built-in mechanisms for the verification.
Instead, another file (called a hash list) with the hashes of all the individual
files is created. The hashes are only based on the filestream content and not
their associated attributes.

TULP 2G [van den Bos and van der Knijff, 2005] is an open source tool
for acquiring and decoding data from electronic devices. It uses an XML
format for the storage of case related data. A sample of the data is given
in figure 2. To calculate the hash of the case items or the entire case, the
formulas in figure 3 are used.

In these formulas, the hash of an item is computed by concatenating
its metadata with the string content. The hash is then performed on that
resultant output. A similar process is used to compute the hash of the in-
vestigation and that of the case.

Figure 2: Tulp 2G Data Format

The problem with the L01 format is the lack of documentation around
how it works. That makes it difficult for other tools to implement and verify
the results produced by a tool. FTK’s hash list is quite simple to verify in
that it is a plaintext file which could be read and verified by a human. The
first problem is that it only considers the file data. If the file’s metadata, such
as creation or modification date, is altered, that change will not be detected.
The second problem is that because the hash of every single file has to be



Figure 3: Calculation of Hash

specified, the hash list gets large very quickly, making it difficult for human
verification. The Tulp2G XML format is an improvement on the above in
that it is open and takes all attributes into account when calculating the
hash. However, it is designed for a specific application and is not flexible
enough to handle other applications. If other attributes were introduced, it
would not be able to handle them without changing the algorithm used to
calculate the hash. In addition, it does not address the ordering problem
discussed above.

3 SORTED VECTOR HASHING

A logical image will consist of the following: Item, Attributes and Children.
The item is a logical entry in the image. For example on a logical filesystem
image, the item could be a file. The attribute will be the filename, date
or owner. The children could be other files (if this file is a folder) or data
streams in the file. Most file systems allow a single child in the latter vase
(but note that NTFS can have multiple streams).

The way that a hash is calculated depends on what you are trying to
verify. For example when trying to calculate the hash of a folder, the order
of the children is not important. Actually, from a logical perspective, there
is no universally defined way of sorting the contents of a folder. That is,
the following should hold for a folder f , with files f1, f2 and f3: h(f) =
h(f1, f2, f3) = h(f2, f1, f3) = ... = h(f3, f2, f1). In this text, this is
referred to as commutativity. However when calculating the hash of the
attributes, the order is important. For example a file will have a creation,
modification and access date. Now even though there also is no obvious
order in which the hash must be applied to the attributes, it must be applied



uniformly to yield the same output. That is: if a = {a1, a2, a3} is the set of
attributes then h(a) = h(a1, a2, a3), but

h(a1, a2, a3) 6= h(a2, a1, a3) . . . 6= h(a3, a2, a1)

The process for performing the hash must be able to cater for the two
scenarios above, one where the order is not important and the other where it
is. To achieve this, the Sorted Vector Hashing (SVH) algorithm was conceived
and its aim is to generate a single hash from a number of logical items. The
algorithm assumes that the sort order is not important for children but is for
attributes.

To compute the hash on the data represented in the tree on figure 1, one
would start at the terminal nodes in the tree and work one’s way up to the
root. Each node in the tree has zero or more attributes and children. Stated
formally:

I = (〈a1, a2, . . . , am〉〈c1, c2, . . . , cn〉) (1)

I represents an arbitrary node in the tree. ai and ci represent an arbitrary
attribute and child of I respectively. Note that the inner text content of a
node is treated as an attribute.

The ordering of the attributes must be preserved. For that reason com-
puting the hash(H(x)) of the attributes is straightforward since it only in-
volves concatenating the hashes of the respective attributes and then calcu-
lating the hash over the resultant output. This is referred to as Unsorted
Vector(UV). Therefore the hash of the attributes is:

H(Ia) = UV (Ia) = H(
m⊎

i=1

H(ai)) (2)

where
⊎

is used to denote concatenation.
The ordering of the children however is not important and as a result

the oder in which the happen to be must not affect the output hash. To
achieve this, the child hashes are computed and then the hashes are sorted.
It is only after that that the resultant output is concatenated and hashed.
To state this formally, assume H(ci) = yi. Then, construct a sorted vector,
〈z1, . . . , zn〉, such that

∀yi∃zj where zj = yi (3)



and
(∀zi, i < n)zi ≤ zi+1 (4)

Then H(Ic) = SV (Ic) = H(
n⊎

j=1

zi) (5)

To get the hash of I, the hash of its attributes is concatenated with that
of the children and then rehashed. That is:

H(I) = UV (H(Ia)
⊎

H(Ic)) (6)

Note that equation 6 is applied recursively to the nodes in the tree starting
from the root. To compute the hash of the child, the equation is applied where
the child would then be I.

4 EVALUATION AND FUTURE WORK

To evaluate the algorithm, it was tested against a number of sample XML
documents where a node represents an item. The XML attributes repre-
sent the item’s attributes and the child elements the item’s children. If the
algorithm works, it must fulfil the following requirements:

1. The names of the tags should not affect the output

2. The ordering of the attribute tags should affect the output

3. The ordering of the child elements should not affect the output

4. The values of the child or attribute nodes should affect the output

A number of these sample XML documents were used to test if the al-
gorithm behaved as it should. These are given in figures 4, 5, 6 and 7. The
hash values for the documents are summarised in the tables 1 and 2. In the
following paragraphs, the results from applying the algorithm are discussed.
It is also described how the requirements stated above are satisfied by the
algorithm.

The algorithm described in the previous section does not take into account
the names when computing the output. Therefore the first requirement is
obviously satisfied.



Figure 4: Sample 1

Figure 5: Sample 2

In sample 4, the order of the attributes is changed. Since in this paper
the names of the tags are not considered, the ordering of the attributes
is important in order to preserve the semantic meaning of the attributes.
Therefore, sample 4 would be considered different from 1. Since the hash is
different, it satisfies the second requirement.

Sample 1 and sample 2 are supposed to represent the same logical data.
The only differences are the ordering of the children of the contact and file
node as well as the names of some of the tags. The reader’s attention is
drawn to the fact that their hashes are exactly the same. This is consistent
with the third requirement that the ordering of the child elements should not
affect the output.

In sample 3 the value of the contact node is changed. The name, last-
name and email attribute values are changed to ”Jack”, ”Johnson” and ””
respectively. For that reason, the hash produced is different, thus satisfying
requirement 4.



Figure 6: Sample 3

Figure 7: Sample 4

From the analysis of the hashes, one can conclude that the algorithm
works as expected — two logical items must produce the same hash if and
only if their content is the same.

5 CONCLUSION

In this paper, the challenges of calculating a hash for logical items are dis-
cussed. The current tools which handle logical data are analysed and their
limitations discussed. The biggest contribution of this paper is the intro-
duction of a method for verifying logical data that overcomes some of the
limitations of the other tools. The method was tested on a small dataset and
the results confirm that it works.

The work presented is an important aspect of the research into mobile
forensics since it enables reliable verification and comparison of logical data
from potentially different sources. It is hoped that this will contribute to a



Sample MD5
1 85 19 86 F2 24 B2 70 EA F4 3B F8 93 F7 E6 79 71
2 85 19 86 F2 24 B2 70 EA F4 3B F8 93 F7 E6 79 71
3 78 77 A6 E5 FF C6 33 B4 A8 F7 82 AC 73 D9 9F EE
4 96 E1 6F FD 78 05 E8 5B F8 5A AD 05 90 63 81 BB

Table 1: MD5 Hash Summary

Sample SHA1
1 17 04 13 47 FA 0E 1A A4 C0 CC A4 B6 0A 50 90 F9 4F 35 1C D3
2 17 04 13 47 FA 0E 1A A4 C0 CC A4 B6 0A 50 90 F9 4F 35 1C D3
3 7B 5F B0 8F 83 EC 07 61 68 6D DC 6E B9 BD 09 8A 05 11 E9 A9
4 0A 89 2D 95 0B D7 D5 51 5C 8F 2F B5 5B F9 89 50 06 24 7B FE

Table 2: SHA1 Hash Summary

standardisation of verification methods in computer forensics.

References

[Guidance Software, 2008a] Guidance Software (2008a). Encase.
www.guidancesoftware.com.

[Guidance Software, 2008b] Guidance Software (2008b). Forensic toolkit.
www.accessdata.com.

[Harrill and Mislan, 2007] Harrill, D. C. and Mislan, R. P. (2007). A small
scale digital device forensics ontology. Small Scale Digital Forensics Jour-
nal, 1(1):1–7.

[Jansen and Ayers, 2006] Jansen, W. and Ayers, R. (2006). Guidelines on
cell phone forensics. Technical report, National Institution of Standards
and Technology.

[Mokhonoana and Olivier, 2007] Mokhonoana, P. and Olivier, M. S. (2007).
Acquisition of a symbian smart phones content with an on-phone forensic
tool. In Proceedings of the Southern African Telecommunication Networks
and Applications Conference 2007 (SATNAC 2007), Mauritius.



[van den Bos and van der Knijff, 2005] van den Bos, J. and van der Knijff,
R. (2005). TULP2G – an open source forensic software framework for
acquiring and decoding data stored in electronic devices. International
Journal of Digital Evidence, 4(2).


