

A LOW BIT ARCHITECTURE FOR A VERY COMPACT

HARDWARE IMPLEMENTATION OF THE AES ALGORITHM

Abdullah Haroon Rasheed, M. Essam, Umair Khalid, Sheikh M. Farhan1, Dr. Shoab A. Khan

Dept. of Computer Engineering, College of Electrical & Mechanical Engineering, National
University of Sciences and Technology, Rawalpindi, Pakistan
1University of Engineering and Technology, Texila, Pakistan

ahrasheed@gmail.com, +92-333-5255468, EME College, Peshawar Road, Rawalpindi, Pakistan

arain_essam@hotmail.com, +92-300-6689766, EME College, Peshawar Road Rawalpindi, Pakistan

umairsuleri@hotmail.com, +92-345-6691988, EME College, Peshawar Road, Rawalpindi, Pakistan

smfarhan@carepvtltd.com.pk, +92-300-8526163, 19-Attaturk Avenue G-5/1, Islamabad, Pakistan

shoab@carepvtltd.com , +92-300-8568714, EME College, Peshawar Road, Rawalpindi Pakistan

ABSTRACT

This paper presents the implementation of the Advanced Encryption Standard algorithm on an 8-bit
compact architecture. Encryption, key scheduling and decryption are implemented by small
resources and extensive resource sharing. The architecture is perfectly suited for low cost
applications which require moderately high data rates. Among the various cost effective and
compact implementations already available, this architecture presents a novel design of the data
path which has been modelled on 8-bit systolic architecture. The S-Box required for byte
substitution has been implemented in BRAMS further reducing the consumed area. The design has
been further embellished by a memory based controller which simplifies the control process and
makes it viable for very effective hardware utilization. This produces one of the smallest
implementations of the algorithm on FPGA with a reasonably high throughput. Considering the
aforementioned, it minimizes area and power consumption, the basic factors of a low cost
implementation. Comparisons drawn from FPGA implementation with other architectures have also
been presented.

KEY WORDS

Encryption AES Security 8-bit-systolic-architecture

mailto:ahrasheed@gmail.com
mailto:arain_essam@hotmail.com
mailto:umairsuleri@hotmail.com
mailto:smfarhan@carepvtltd.com.pk
mailto:shoab@carepvtltd.com

A LOW BIT ARCHITECTURE FOR A VERY COMPACT

HARDWARE IMPLEMENTATION OF THE AES ALGORITHM

1 INTRODUCTION
Rijndael algorithm [2] was selected as the Advanced Encryption Standard (AES) [1] by the
National Institute of Standards and Technology (NIST) in November 2001. This cryptographic
algorithm is and will be used extensively for maintaining data security and reliability in various
wireless and wired transmissions. As the application of the new encryption algorithm grows, so
does the need for variety in design approach.

For meeting the currently rising trend of wireless communication, architectures must cover
the constraints posed by power and cost. Keeping these factors to the minimum and yet developing
an architecture with reasonably high throughput is a challenge posed to the designers and the one
addressed by this paper. It has been observed that speeds up to 60 Mbps are fairly high for wireless
communications. Thus the design trade-offs can be explored by keeping in perspective the
throughput requirements and the minimized area constraints of low-end applications such as
handheld devices and different low-cost surveillance and monitoring systems.

The main focus in the approach presented by this paper is to generate an amenably controlled
architecture with significant reduction in resources consumed by the data path. The following
sections present some related designs and their respective differences from the proposed model, an
overview of the encryption algorithm, designed architecture and the obtained results along with
comparisons with similar and other area-optimized alternatives.

2 COMPARABLE WORK
A considerable amount of work has been done on low cost FPGA implementations of the AES
algorithm. Most of the research focused on efficient use of FPGA resources such as [5], [6].

Other architectures used a 32-bit data path and optimized the design to meet area
minimization [3], [4]. Such designs were believed to be limited due to the MixColumn
transformation which prevented the design of a narrower data path.

An 8-bit application specific processor (ASIP) was proposed eventually [7] but an
architecture incorporating a smaller data path was still not available. An ASIC architecture was
developed [8] with quite a bit of control overhead. This design incorporates a similar 8-bit systolic
data path but reduces the control overhead on area, by the design of a micro-coded controller. It
further makes use of the techniques, mentioned in Section 4 and 5, for efficient use of the FPGA
resources available.

3 ADVANCED ENCRYPTION STANDARD ALGORITHM
The encryption algorithm approved by NIST by an FIPS publication [1], has the provision of using
128,192 or 256 bit key lengths. In this algorithm a 128 bit key has been used.

The algorithm takes a 128-bit data block and is initialized by addition of the cipher key to the
data block. Subsequent transformations occur on this block, which is referred to as a state. The
cipher is iterative and with 128-bit key length, the state goes through ten rounds of same set of
transformations.

 The following pseudo code presents a general overview of the transformations in the encryption
process.

Round(State,RoundKey)

{

ByteSub(State);

ShiftRows(State);

MixColumn(State);

AddRoundKey(State,RoundKey);

}

The final round of the cipher is slightly different. It is defined by:

FinalRound(State,RoundKey)

{

ByteSub(State) ;

ShiftRows(State) ;

AddRoundKey(State,RoundKey);

}

The ByteSub Transformation is a non-linear byte substitution, operating on each of the State
bytes independently. The substitution table (or S-box) is invertible and obtained by taking
multiplicative inverses in GF(28) and applying an affine transformation.

Figure1. Byte Substitution through S-box

In ShiftRows, the rows of the State are cyclically shifted over different offsets. Row 0 is not
shifted, row 1 is shifted over 1 byte, row 2 over 2 bytes and row 3 over 3 bytes.

Figure2. The ShiftRows Transformation

In the MixColumn transformation matrix multiplication is performed. Each column, in the 4x4
byte block of data is multiplied by a matrix as shown in Figure 3. The entries are in GF(28) field.

Figure3. The MixColumn Transformation

A Round Key is added to the state by a simple bitwise XOR. The Round Key is derived from
the Cipher Key by means of the key schedule.

The key scheduling consists of two components: the Key Expansion and the Round Key
Selection. The basic principle is that the total number of Round Key bits is equal to the number of
rounds plus one multiplied by the block length. The Cipher Key is expanded into an Expanded Key.

4 LOGICAL DESIGN
The proposed design makes use of the fact that the algorithm can be generally mapped on a low bit
architecture. The main hindrance in this exercise is the MixColumn transformation. This can be
overcome by the use of a systolic architecture which uses the systolic matrix multiplication
technique [8]. This systolic architecture although very effective in area reduction, generates quite a
bit of overhead on the FPGA space.

The design proposed in this paper minimizes this overhead by implanting a controller which
is not architectural, but in the form of a micro-coded statemachine. This micro-coded statemachine
has capabilities of iteratively running instructions through the use of a down counter. All the
controller information i.e. the control signals are pre-calculated according to the algorithm and the
signals only need to be sent to the appropriate data path units for controlling and manipulating data.

The ShiftRows transformation can be implemented before the ByteSub transformation. Using
this property of the cipher the ShiftRows transformation can be eliminated from the main
encryption round by supplying the data to the data path in accordance with the ShiftRow
transformation.

Moreover the key expansion and encryption processes have been implemented on the same
data path, as is not the case with generally available algorithms. The control for key expansion has
been implemented in main controller.

5 PHYSICAL DESIGN
All registers and interconnections used in the architecture are 8-bits wide. The controller and the
data paths are described in detail over the next sections.

5.1 Micro-Coded Controller
The controller has been implemented on the dual port Block SelectRAMTM (BRAM) available in
the FPGA. Four BRAMs of size 36x256 have been allocated for this purpose. A down counter is

implemented in the architecture to iteratively move through the same instructions. The pre-
calculated instructions are translated in the state register and sent to the appropriate mux units.
Three BRAMs have been used for the encryption instructions and one for the key expansion
instructions.

The last of the BRAMs holds signals for key expansion. As soon as the cipher key is written
in one of the memories as explained in Section 5.3, the controller loads the state register with
contents from this BRAM. Once the key expansion process is finished the controller returns to the
encryption process. The obstruction in speed posed by this wait for key expansion is traded-off in
terms of area saved with use of the same architecture for both processes.

As mentioned earlier, it is very important to note that the implementation of controller on
BRAMs not only makes it efficient in its responsiveness, but also makes the control logic flexible.
The data path can be potentially used for other purposes or supporting pragmatic changes in the
algorithm. The BRAMs provide a better access time then any other controller implementation and
better performance. Figure5 shows the general design of the controller.

Figure5. The Micro-Coded Controller

5.2 Data Path

The data path consists of a few multiplexers and 8-bit registers as shown in Figure6. The design is
power efficient and occupies very little space. The AddRoundKey transformation is simple bitwise
XOR of the key with data. In this case 8 bits of key are XORed with 8 bits of state data.

The ByteSub transformation requires S-Box. This S-Box has been implemented on an 8x256
bit space in a BRAM. This implementation makes the design on FPGA core, further reduced and
compact.

The MixColumn transformation requires matrix multiplication over GF(28). This is achieved
by XOR and shift operations. As in each row of the matrix the elements are right shifted by a

position, a systolic architecture can be implemented by implementing the three basic multiplications
and calculating the partial sums for every element and then shifting these partial sums to be
accumulated with the corresponding partial sums.

The state which is processed out of one round of encryptions needs to be stored in the
memory as well. For this purpose 8x32 bit memory is utilized on the same BRAM which
incorporates the S Box. After 10 rounds of the above mentioned processes, the encrypted data is
available as output in 16 bytes of this space.

5.2.1 Key Expansion
As the key expansion is carried out on the same data path the cipher key needs to be stored in
memory along with the generated round keys. As soon as the first 16 bytes of key are written on the
memory initially, the key expansion process starts. The cipher key and the generated round keys are
stored in 8x160 bit space of a BRAM.

For the key expansion process the last column of four bytes of the key are fed into the
MixColumn process, bypassing the ByteSub and AddRoundKey transformations. The MixColumn
architecture gives a rotation to the last two bytes. These four bytes are supplied to S-Box for
ByteSub transformation. Then they are XORed byte by byte with the first column of the key and
again with a column from the RCON table. The RCON table is also stored in 8x10 bits of memory.

After 40 iterations of similar and slightly different processes the 160 bytes of expanded key is
available in the memory.

Figure6. The Data Path

6 RESULTS AND OBSERVATIONS
The AES algorithm design was tested and verified using the Advanced Encryption Standard
Algorithm Validation Suite (AESAVS) [9] in modelsim simulation environment and then on
hardware. It was synthesized on a Xilinx Virtex II XC2V1000 FPGA. The resulting synthesis
occupied as low as 235 slices, which is considerably less then area occupied by most 32-bit
architectures and quite reduced from the available 8-bit architecture [8]. The architecture can be
operated on a clock frequency of 120 Mhz. And has a throughput of 55Mbits/sec.

The architecture was also implemented on a low cost Xilinx Spartan II FPGA. The target
device was XC2S30. This implementation can be operated on a clock frequency of 54 Hz. The
comparisons drawn with other low cost implementations over reconfigurable hardware are stated in
Table1.

Table1. Comparison with low-cost architectures

[3] [5] [4] [8] This
Implementation

This
Implementation

Device Xilinx
XC2S30

Xilinx
XCV1000 XC3S50 XC2V1000 XC2V1000 XC2S30

Process Enc/Dec Enc Enc Enc Enc Enc
Slices 222 5302 163 337 235 244
Speed
(MHz) 60 14.1/31.8 71 110 120 53

7 CONCLUSION
The paper presented an 8-bit area efficient design of the AES algorithm implementation on FPGA.
The low bit data path, results in efficient use of area and a low power design. The resulting design
when implemented on an off the shelf FPGA results in less then 50% resource utilization on the
FPGA, thus leaving enough space on a high end FPGA for other glued architectures. The micro-
coded controller further expounds this characteristic. And thus relieves the over head caused by low
bit mapping of the architecture by efficient use of FPGA RAMs. Shared encryption and key
scheduling data paths result in high level of resource utilization and sharing. The 8-bit architecture
is fully scaleable, and multiple instances can be used to achieve a throughput higher then the current
rate of 55 Mbps

The architecture is perfectly suited for wireless communication and embedded systems and is
very practical in its implementation, as it provides speed upto 53 MHz, which is quite enough for
wireless communication of the contemporary era .

8 PERMISSIONS
Figure1, Figure2, Figure3 taken from the publicly available FIPS-197 published by NIST [1]

9 REFERENCES
[1] National Institute of Standards and Technology (NIST), Information Technology Laboratory
(ITL), Advanced Encryption Standard (AES), Federal Information Processing Standards (FIPS)
Publication 197, November 2001.

[2] J. Daemen, V.Rijmen “The Rijndael Block Cipher” AES proposal, First Candidate conference
(AESI), August 20-22, 1998.

[3] P. Chodowiec, K. Gaj, “Very Compact FPGA Implementation of the AES Algorithm”, Proc.
Cryptographic Hardware and Embedded Systems (CHES 2003), LNCS Vol. 2779, pp.319 – 333,
Springer-Verlag, October 2003

[4] G. Rouvroy, F. X. Standaert, J. J. Quisquater, J. D. Legat, “Compact and efficient
encryption/decryption module for FPGA implementation of the AES Rijndael very well suited for
small embedded applications”, Proceedings of the international conference on Information
Technology: Coding and Computing 2004 (ITCC 2004), pp. 583 – 587, Vol. 2, April 2004

[5] A.J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA Based Performance Evaluation of
the AES Block Cipher Candidate Algorithm Finalists”, Proc. Third Advanced Encryption Standard
(AES) Candidate Conf., Apr. 2000.

[6] K. Gaj and P. Chodowiec, “Comparison of the Hardware Performance of the AES Candidates
Using Reconfigurable Hardware”, Proc. Third Advanced Encryption Standard (AES) Candidate
Conf., Apr. 2000.

[7] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Smallest”, Proc.
Cryptographic Hardware and Embedded Systems (CHES 2005) 7th International Workshop,
Edinburgh, UK, August 29 – September 1, 2005

[8] S. M. Farhan, H. Jamal and M. Rahmatullah, "High Data Rate 8-bit crypto-processor”, Proc.
Peer-reviewed Proceedings (ISBN 1-86854-522-9) of the ISSA 2004 enabling tomorrow
Conference, 30 June - 2 July 2004, Gallagher Estate, Midrand, SOUTH AFRICA.

[9] L. E. Bassham, “The Advanced Encryption Standard Algorithm Validation Suite (AESAVS)”,
National Institute of Standards And Technology, Information Technology Laboratory, November
2002.

[10] Xilinx VirtexTM II Platform FPGAs. URL: www.xilinx.com

	INTRODUCTION
	COMPARABLE WORK
	ADVANCED ENCRYPTION STANDARD ALGORITHM
	LOGICAL DESIGN
	PHYSICAL DESIGN
	Micro-Coded Controller
	Data Path
	Key Expansion

	RESULTS AND OBSERVATIONS
	CONCLUSION
	PERMISSIONS
	REFERENCES

