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ABSTRACT 

This paper presents the implementation of the Advanced Encryption Standard algorithm on an 8-bit 
compact architecture. Encryption, key scheduling and decryption are implemented by small 
resources and extensive resource sharing. The architecture is perfectly suited for low cost 
applications which require moderately high data rates. Among the various cost effective and 
compact implementations already available, this architecture presents a novel design of the data 
path which has been modelled on 8-bit systolic architecture. The S-Box required for byte 
substitution has been implemented in BRAMS further reducing the consumed area. The design has 
been further embellished by a memory based controller which simplifies the control process and 
makes it viable for very effective hardware utilization. This produces one of the smallest 
implementations of the algorithm on FPGA with a reasonably high throughput. Considering the 
aforementioned, it minimizes area and power consumption, the basic factors of a low cost 
implementation. Comparisons drawn from FPGA implementation with other architectures have also 
been presented.      
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A LOW BIT ARCHITECTURE FOR A VERY COMPACT 

HARDWARE IMPLEMENTATION OF THE AES ALGORITHM 

1 INTRODUCTION 
Rijndael algorithm [2] was selected as the Advanced Encryption Standard (AES) [1] by the 
National Institute of Standards and Technology (NIST) in November 2001. This cryptographic 
algorithm is and will be used extensively for maintaining data security and reliability in various 
wireless and wired transmissions. As the application of the new encryption algorithm grows, so 
does the need for variety in design approach. 

For meeting the currently rising trend of wireless communication, architectures must cover 
the constraints posed by power and cost. Keeping these factors to the minimum and yet developing 
an architecture with reasonably high throughput is a challenge posed to the designers and the one 
addressed by this paper. It has been observed that speeds up to 60 Mbps are fairly high for wireless 
communications. Thus the design trade-offs can be explored by keeping in perspective the 
throughput requirements and the minimized area constraints of low-end applications such as 
handheld devices and different low-cost surveillance and monitoring systems. 

The main focus in the approach presented by this paper is to generate an amenably controlled 
architecture with significant reduction in resources consumed by the data path. The following 
sections present some related designs and their respective differences from the proposed model, an 
overview of the encryption algorithm, designed architecture and the obtained results along with 
comparisons with similar and other area-optimized alternatives. 

 

2 COMPARABLE WORK 
A considerable amount of work has been done on low cost FPGA implementations of the AES 
algorithm. Most of the research focused on efficient use of FPGA resources such as [5], [6]. 

Other architectures used a 32-bit data path and optimized the design to meet area 
minimization [3], [4]. Such designs were believed to be limited due to the MixColumn 
transformation which prevented the design of a narrower data path. 

An 8-bit application specific processor (ASIP) was proposed eventually [7] but an 
architecture incorporating a smaller data path was still not available. An ASIC architecture was 
developed [8] with quite a bit of control overhead.  This design incorporates a similar 8-bit systolic 
data path but reduces the control overhead on area, by the design of a micro-coded controller. It 
further makes use of the techniques, mentioned in Section 4 and 5, for efficient use of the FPGA 
resources available. 

 

3 ADVANCED ENCRYPTION STANDARD ALGORITHM 
The encryption algorithm approved by NIST by an FIPS publication [1], has the provision of using 
128,192 or 256 bit key lengths. In this algorithm a 128 bit key has been used. 

The algorithm takes a 128-bit data block and is initialized by addition of the cipher key to the 
data block. Subsequent transformations occur on this block, which is referred to as a state. The 
cipher is iterative and with 128-bit key length, the state goes through ten rounds of same set of 
transformations. 

  



 The following pseudo code presents a general overview of the transformations in the encryption 
process. 
 

Round(State,RoundKey) 

{ 

ByteSub(State); 

ShiftRows(State); 

MixColumn(State); 

AddRoundKey(State,RoundKey); 

} 

 

The final round of the cipher is slightly different. It is defined by: 

 

FinalRound(State,RoundKey) 

{ 

ByteSub(State) ; 

ShiftRows(State) ; 

AddRoundKey(State,RoundKey); 

} 

The ByteSub Transformation is a non-linear byte substitution, operating on each of the State 
bytes independently. The substitution table (or S-box) is invertible and obtained by taking 
multiplicative inverses in GF(28) and applying an affine transformation.  
 

 

Figure1.  Byte Substitution through S-box 

 

In ShiftRows, the rows of the State are cyclically shifted over different offsets. Row 0 is not 
shifted, row 1 is shifted over 1 byte, row 2 over 2 bytes and row 3 over 3 bytes. 

 

Figure2. The ShiftRows Transformation 

 

  



In the MixColumn transformation matrix multiplication is performed. Each column, in the 4x4 
byte block of data is multiplied by a matrix as shown in Figure 3. The entries are in GF(28) field. 

 

 

Figure3. The MixColumn Transformation 

  

A Round Key is added to the state by a simple bitwise XOR. The Round Key is derived from 
the Cipher Key by means of the key schedule. 

 

The key scheduling consists of two components: the Key Expansion and the Round Key 
Selection. The basic principle is that the total number of Round Key bits is equal to the number of 
rounds plus one multiplied by the block length. The Cipher Key is expanded into an Expanded Key. 

 

4 LOGICAL DESIGN 
The proposed design makes use of the fact that the algorithm can be generally mapped on a low bit 
architecture. The main hindrance in this exercise is the MixColumn transformation. This can be 
overcome by the use of a systolic architecture which uses the systolic matrix multiplication 
technique [8]. This systolic architecture although very effective in area reduction, generates quite a 
bit of overhead on the FPGA space.  

The design proposed in this paper minimizes this overhead by implanting a controller which 
is not architectural, but in the form of a micro-coded statemachine. This micro-coded statemachine 
has capabilities of iteratively running instructions through the use of a down counter. All the 
controller information i.e. the control signals are pre-calculated according to the algorithm and the 
signals only need to be sent to the appropriate data path units for controlling and manipulating data. 

The ShiftRows transformation can be implemented before the ByteSub transformation. Using 
this property of the cipher the ShiftRows transformation can be eliminated from the main 
encryption round by supplying the data to the data path in accordance with the ShiftRow 
transformation. 

Moreover the key expansion and encryption processes have been implemented on the same 
data path, as is not the case with generally available algorithms. The control for key expansion has 
been implemented in main controller. 

 

5 PHYSICAL DESIGN  
All registers and interconnections used in the architecture are 8-bits wide. The controller and the 
data paths are described in detail over the next sections. 

 

5.1 Micro-Coded Controller 
The controller has been implemented on the dual port Block SelectRAMTM (BRAM) available in 
the FPGA. Four BRAMs of size 36x256 have been allocated for this purpose. A down counter is 

  



implemented in the architecture to iteratively move through the same instructions. The pre-
calculated instructions are translated in the state register and sent to the appropriate mux units. 
Three BRAMs have been used for the encryption instructions and one for the key expansion 
instructions. 

The last of the BRAMs holds signals for key expansion. As soon as the cipher key is written 
in one of the memories as explained in Section 5.3, the controller loads the state register with 
contents from this BRAM. Once the key expansion process is finished the controller returns to the 
encryption process. The obstruction in speed posed by this wait for key expansion is traded-off in 
terms of area saved with use of the same architecture for both processes. 

As mentioned earlier, it is very important to note that the implementation of controller on 
BRAMs not only makes it efficient in its responsiveness, but also makes the control logic flexible. 
The data path can be potentially used for other purposes or supporting pragmatic changes in the 
algorithm. The BRAMs provide a better access time then any other controller implementation and 
better performance. Figure5 shows the general design of the controller. 

  

Figure5. The Micro-Coded Controller 

 

5.2 Data Path 

The data path consists of a few multiplexers and 8-bit registers as shown in Figure6. The design is 
power efficient and occupies very little space. The AddRoundKey transformation is simple bitwise 
XOR of the key with data. In this case 8 bits of key are XORed with 8 bits of state data.  

The ByteSub transformation requires S-Box. This S-Box has been implemented on an 8x256 
bit space in a BRAM. This implementation makes the design on FPGA core, further reduced and 
compact.  

The MixColumn transformation requires matrix multiplication over GF(28). This is achieved 
by XOR and shift operations. As in each row of the matrix the elements are right shifted by a 

  



position, a systolic architecture can be implemented by implementing the three basic multiplications 
and calculating the partial sums for every element and then shifting these partial sums to be 
accumulated with the corresponding partial sums.  

The state which is processed out of one round of encryptions needs to be stored in the 
memory as well. For this purpose 8x32 bit memory is utilized on the same BRAM which 
incorporates the S Box. After 10 rounds of the above mentioned processes, the encrypted data is 
available as output in 16 bytes of this space. 

 

5.2.1 Key Expansion 
As the key expansion is carried out on the same data path the cipher key needs to be stored in 
memory along with the generated round keys. As soon as the first 16 bytes of key are written on the 
memory initially, the key expansion process starts. The cipher key and the generated round keys are 
stored in 8x160 bit space of a BRAM. 

For the key expansion process the last column of four bytes of the key are fed into the 
MixColumn process, bypassing the ByteSub and AddRoundKey transformations. The MixColumn 
architecture gives a rotation to the last two bytes. These four bytes are supplied to S-Box for 
ByteSub transformation. Then they are XORed byte by byte with the first column of the key and 
again with a column from the RCON table. The RCON table is also stored in 8x10 bits of memory. 

After 40 iterations of similar and slightly different processes the 160 bytes of expanded key is 
available in the memory.  

 

 

Figure6. The Data Path 

 

6 RESULTS AND OBSERVATIONS 
The AES algorithm design was tested and verified using the Advanced Encryption Standard 
Algorithm Validation Suite (AESAVS) [9] in modelsim simulation environment and then on 
hardware. It was synthesized on a Xilinx Virtex II XC2V1000 FPGA. The resulting synthesis 
occupied as low as 235 slices, which is considerably less then area occupied by most 32-bit 
architectures and quite reduced from the available 8-bit architecture [8]. The architecture can be 
operated on a clock frequency of 120 Mhz. And has a throughput of  55Mbits/sec. 

 

  

  



The architecture was also implemented on a low cost Xilinx Spartan II FPGA. The target 
device was XC2S30. This implementation can be operated on a clock frequency of 54 Hz.  The 
comparisons drawn with other low cost implementations over reconfigurable hardware are stated in 
Table1. 

Table1. Comparison with low-cost architectures 

 

[3] [5] [4] [8] This 
Implementation 

This 
Implementation

Device Xilinx 
XC2S30 

Xilinx 
XCV1000 XC3S50 XC2V1000 XC2V1000 XC2S30 

Process Enc/Dec Enc Enc Enc Enc Enc 
Slices 222 5302 163 337 235 244 
Speed 
(MHz) 60 14.1/31.8 71 110 120 53 

 

7 CONCLUSION 
The paper presented an 8-bit area efficient design of the AES algorithm implementation on FPGA. 
The low bit data path, results in efficient use of area and a low power design. The resulting design 
when implemented on an off the shelf FPGA results in less then 50% resource utilization on the 
FPGA, thus leaving enough space on a high end FPGA for other glued architectures. The micro-
coded controller further expounds this characteristic. And thus relieves the over head caused by low 
bit mapping of the architecture by efficient use of FPGA RAMs. Shared encryption and key 
scheduling data paths result in high level of resource utilization and sharing. The 8-bit architecture 
is fully scaleable, and multiple instances can be used to achieve a throughput higher then the current 
rate of 55 Mbps 

The architecture is perfectly suited for wireless communication and embedded systems and is 
very practical in its implementation, as it provides speed upto 53 MHz, which is quite enough for 
wireless communication of the contemporary era . 

 

8 PERMISSIONS 
Figure1, Figure2, Figure3 taken from the publicly available FIPS-197 published by NIST [1] 
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