

Proposing a Secure XACML architecture
ensuring privacy and trust

Yared Keleta, J.H.P Eloff, H.S Venter

1yared@cs.up.ac.za
2eloff@cs.up.ac.za
3hein@cs.up.ac.za

Information and Computer Security Architectures Research Group
(ICSA)

Department of Computer Science
University of Pretoria

Abstract

The Extensible Access Control Markup Language (XACML) is a platform independent
standard based access control policy specification language. It defines rules on how
authorization decisions from evaluating applicable access control policies are combined.
However, it fails to incorporate built-in trust and privacy-enhancing mechanisms. There are
some possible attacks that are identified in the specification that can potentially breach the
security of a system using XACML. They are: unauthorized disclosure, message replay,
message insertion, message deletion and message modification. In addition to these, there
are no mechanisms in place to ensure the confidentiality and integrity of messages in transit
between the components of the standard XACML architecture. This paper will briefly
investigate the security loop holes in the XACML architecture and proposes an architecture
that incorporates built-in trust and privacy features.

Keywords: Architecture, Possible Attacks, Access control policy

1. Introduction

There is an increasing need for information systems integration in organizations. This is
because various business applications are developed in different technologies, and run on
different platforms. However, it is important to examine if there are any side effects and
security implications that could subsequently emerge after the integration process. For
instance, departments within an organization may have different information systems, and
each information system may have its own proprietary access control implementation. Thus,
the integration of these information systems could have various security implications such as
inconsistencies in authorization decisions due to many points of enforcement of access
control policies within the same organization. Therefore, in order to avoid such
inconsistencies and put an appropriate common access control mechanisms in place, the
security infrastructure of each information system should be carefully understood before any
integration takes place.

 Due to the fact that there are various implementations of proprietary access control
mechanisms, addressing the security requirements of an organization makes an integration
process reasonably complicated. That is why there is a need for a common standard-based
access control policy specification language that could be deployed in heterogeneous
environments such as in Web services. Since Web services are mainly designed for the
purpose of integration of different applications and platforms, it is very important to have a
standard-based access control specification language that could be used by all the interacting
parties that ensures only authorized users have access to a resource. The main idea is to find
a convenient access control mechanism which can interoperate easily with any information
system.

Taking the need for a standard-based access control policy specification language into
consideration, the Organization for Advancement of Structured Information Standard
(OASIS) ratified the Extensible Access Control Markup Language (XACML) [1]. XACML is
believed to be the best candidate for an access control policy specification language in Web
services. Although XACML is a powerful tool for specifying access control policies, and
processing access requests and authorization decisions, it lacks certain built-in trust and
privacy-enhancing mechanisms. There are some possible attacks identified in the
specification that can potentially breach the security of a system using the standard XACML
architecture [1]. They are: unauthorized disclosure, message replay, message insertion,
message deletion and message modification. In addition to these, there are no mechanisms in
place to ensure the confidentiality, integrity and availability of access control policies.

This paper gives an overview of the XACML architecture and briefly discusses the
interactions between the components of the architecture. It emphasizes on the possible
attack scenarios that could potentially threaten an XACML-based system. The background
section gives a broad overview of the XACML architecture. Section 3 discusses the possible
attacks that can take place on an XACML-based system. In Section 4, we propose an
XACML architecture with built-in trust and privacy features. Finally, the conclusion section
summarizes the paper by highlighting the main concepts discussed in the paper.

2. Background

XACML is a platform independent standard-based access control policy specification
language which is described in Extensible Markup Language (XML) [5]. It provides an
architecture that is designed to enable organizations to specify access control policies. It has
several advantages, some of which are: extensibility, flexibility, reusability, scalability and a
policy referencing mechanism [2]. Besides this, it supports a wide range of data types and
functions that can be used in various environments, and defines rules on how authorization
decisions from evaluating applicable policies are combined. It is therefore believed to be
used as a replacement to various application-specific and proprietary access control policy
specification languages.

Resources

4. Fetch
Access control

policy(s)

6. XACML
Response

3. XACML
Request

8. Enforce
Obligations

PDP

PEP

Figure 1 XACML Architecture

PIP

Attribute values

5. Fetch
Attributes

2. Generate
XACML request

7. Deny/
Permit

Applications
1. Access
Request

(Access control
Policies)

PAP

Figure 1 depicts the standard XACML architecture which is the author’s interpretation. It
illustrates the interaction between the components in the architecture. The main
components of the XACML architecture as shown in figure 1 are discussed below.

a) The Policy decision point (PDP)

The PDP receives an XACML request, fetches the applicable policy(s) from the policy
administration point, retrieves the attribute values from the policy enforcement point,
evaluates the request against the applicable access control policies and returns an
authorization decision to the PEP.

b) The Policy enforcement point (PEP)

The PEP receives an access request, extracts the attributes in the request, generates an
XACML request and sends it to the PDP for evaluation. It also makes sure that all the
obligations with an authorization decision are executed. An obligation is an action that
should be performed together with the enforcement of an authorization decision, and is
specified in an access control policy.

c) The Policy administration point (PAP)

The PAP creates an XACML access control policy(s) and stores it in a policy database
server. It addition to this, it sets a restriction in order to prevent unauthorized access to the
access control policies. Beside this, it conducts a regular check in order to maintain the
uniqueness of policy identifiers.

d) The Policy information point (PIP)

The PIP is a component that acts as a directory server that stores the attribute values and
makes it available to the PDP. Attributes values are the data that describe the characteristics
of a subject, resource, action and environment. Examples of attributes include: the subject’s
name, ID and login ID, the time of the day, the name of the resource, and what action (read,
write, execute) is required.

Moreover, in figure 1, applications refer to any machine, program or any client that may
request an access to a resource in an XACML-based system. Resources refer to any
document, information, file or data that resides in an XACML-based system. The next
section discusses the possible attack scenarios on a system using XACML.

3. Possible trust and privacy attacks on an XACML-based system

Although XACML is believed to bring an integrated solution to access control requirements
in heterogeneous environments, it has some trust and privacy threats. This is because
XACML does not have built-in mechanisms that contribute to preserving the trust between
the components and privacy of messages in transit in the architecture. Some of the potential
trust and privacy threats that could lead into a compromise of an XACML-based system are
explained below.

3.1 Confidentiality of access requests and authorization decisions

It is important to put appropriate safeguards in place to protect decision requests and
authorization decisions from several attacks. Some of which could be: unauthorized
disclosure, message replay, message insertion, message deletion and modification. For
instance, consider a typical data flow scenario in an XACML-based system where the PEP
sends an XACML request to the PDP. There are no mechanisms in place that ensure
whether or not messages in transit are safe from attacks. For example, if an adversary
manages to gain access to the communication channel between the PDP and the PEP, he
would then be able to intercept XACML requests and authorization decisions easily which in
turn enable him/her to insert, modify, interpret or delete messages. This unauthorized
disclosure of information causes a compromise to the privacy of the users in the system. In
addition to these, the adversary can effectively observe and record legitimate messages which
could potentially equip him/her for other attacks such as message replay. Message replay is
an attack in which an adversary can easily forge decision requests and authorization decisions
using previously recorded legitimate messages.

3.2 Integrity of messages (request or response) in transit

There are no mechanisms put in place to ensure the integrity of messages in transit. For
example, when the PDP receives an XACML request, how does it know that the request has
not been modified while it was in transit?

3.3 Trust between the PDP and PEP

The main question that may arise here is: how does the PDP ensure whether the XACML
request it received was indeed sent from the PEP? Similarly, how does the PEP know
whether the authorization decision was indeed sent from the PDP? Therefore it is very
important to establish trust between the PDP and the PEP, because if there is an appropriate
trust enforcing mechanism in place, the PDP and PEP do not need to be concerned about
the identity of senders of a message.

3.4 Trust between the PDP and PAP

Similarly, the correctness of the result of evaluation of the XACML request by the PDP
depends mainly on the integrity of the access control policies that are created and supplied
by the PAP. In addition to this, access control policies that are stored in a policy server
should be protected from any threats such as policy modification, deletion and insertion.
The PAP has to check the uniqueness of the policies on a regular base.

3.5 Privacy of users

Disclosure of information such as the requestor’s identity in the decision request has a huge
impact to the privacy of the users in the system. Appropriate safeguards should be
adequately put into force to prevent the communication channel between the PDP and the
PEP from being intercepted by an adversary. In addition to this, if the policy server is not
secure enough from any kind of unauthorized access, an adversary can gain access to private

information of users (service requestors) and misuse it accordingly. Besides this, the
communication channel of the access requests and authorization decisions, including all the
communications that may occur between the components in the XACML architecture,
should be secure enough to prevent from unauthorized disclosure of the information stored
in the messages.

4. A proposed XACML architecture with inherent trust and privacy
features

4.1 Requirements

Secure connection between the four components of the architecture is very important,
because it is the basis for enhancing the integrity and confidentiality of the messages that are
sent to and fro in the XACML-based system. Moreover, it enhances privacy by protecting
private information of users from unauthorized disclosure. There are several ways of
achieving secure connection. However, it depends not only on the type of connection that is
required to secure the link between each component, but also on the physical location of the
components. For instance, if the components are all located in a small area, it would be
possible to achieve secure connection by protecting the wires between the components
physically [3]. However, due to the fact that the components may not necessarily be located
on the same machine, it is not practical to achieve a secure connection without employing
message integrity and confidentiality-enhancing mechanisms such as encryption. In cases
where the components are distributed in the network, End-to-End Encryption [3] could be
used provided that all the nodes where the components are situated are secure. It is therefore
of utmost importance for the architecture to incorporate inherent security, privacy and trust
enhancing features using appropriate existing technologies.

Achieving the desired level of security, privacy and trust is not an easy task, because
maintenance and configuration of each component independently is not only an
administrative burden, but also is expensive. Therefore, we believe that this could be solved
by adding a new component that handles all security-related matters to the architecture. The
next subsection discusses the proposed architecture that incorporates all the requirements
discussed above.

4.2 The proposed architecture

We propose an XACML architecture (refer to figure 2) that incorporates inherent security
features. In order to achieve this, we introduce a new component called the Security
Information Point (SIP) to the XACML architecture. The SIP is a component that is used
mainly to handle all security-related requirements in the XACML-based system. The SIP
component, acting as a security administration center, sets up and maintains a secure
communication session, and performs all the management of security within the XACML
system. Some of the main functions of the SIP are discussed in the subsections that follow.

4.2.1 Generate random secret keys for encryption: When the SIP component receives a
notification from the PEP that an access request has been sent to the PEP, it generates a
random secret key and establishes an SSL connection with all the other components and
distributes the randomly generated secret key. Diffie-Hellman key exchange is used to
randomly generate and distribute the secret keys, because, keys generated with Diffie-
Hellman key exchange are proved to be random and secure [6]. For every access request,
new secret keys are generated and distributed to the components replacing the old one. By
doing so, every component uses this secret key to encrypt the messages before it is sent to
other components.

Figure 2 proposed XACML Architecture

Resources

4. Fetch
Access control

6. XACML
Response

3. XACML
Request

8. Enforce
Obligations

PDP

PIP

Attribute values

5. Fetch
Attributes

7. Deny/
Permit

Applications
1. Access
Request

SIP

PEP

2. Generate
XACML request

2. Notify

3. SSL connection 3. SSL connection

3. SSL

(Access control
Policies)

PAP

This approach has several advantages, some of which are:

• The adversary can not have an opportunity to find the secret key.
• It ensures the confidentiality of the messages in transit.
• More importantly, this helps for establishing and maintaining dynamic trust between

the components.
• It will be difficult for an adversary to intercept messages.
• Privacy of information in the messages is protected from unauthorized disclosure.
• A new secret key is generated for every access request.

4.2.2 Verification of the Integrity of access control policies

The PAP will have a mechanism to regularly verify the uniqueness and integrity of the access
control policies regularly. It will have a feature that notifies the owner of the policy if any
sort of policy modification is noticed.

4.2.3 Management of security-related information and coordination between
 Components

Here the SIP component plays an important administrative role in the architecture. It has a
well-defined infrastructure to store all the security-related information of the other
components in the entire architecture. It conducts a regular check whether the components
are communicating securely. All the components will have a feature that enables to send a
report to the SIP component in cases where the components identify a suspicious incident.
Furthermore, it provides a platform to keep track of all the security-related incidents and
store it in a location that is only known to the administrator of the system under
consideration. Keeping track of users’ behavior and recording it, is also one of the tasks of
the SIP.

4.3 Data flow in the proposed architecture

The data flow in the proposed architecture works as follows: the PEP receives an access
request, and then it immediately notifies the SIP. The SIP component then establishes a
secure socket layer (SSL) connection with the other four components and distributes to each
of them a randomly generated secret key alone with other security related information. Note
that the SIP component generates a secret key for every access request. The other
components then use this randomly generated secret key that is obtained from the SIP to
encrypt the data in order to verify the origin of the messages. After a successful secure
communication session between components, the PEP finally notifies the SIP component
the authorization decision that is reached from evaluating a specific access request.

5. Conclusion

The approach we followed in this paper has several advantages; this is due to the fact that all
the security-related information is handled by the SIP component, so that the other
components do not have to be concerned about the identity of the other components they
are interacting with. The proposed architecture does not only guarantee a secure connection,
but also establishes dynamic trust between the components based on a run-time interaction.
In addition to this, it preserves the privacy of the users by establishing and maintaining
secure communication channels between the components. We believe our approach is a
good starting point in achieving a well-integrated and secure XACML architecture.

References

[1] eXtensible Access Control Markup Language (XACML) Version 1.1Commeette
 specification Aug 07, 2003 Retrieved from
 http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
 Accessed on March 10, 2005

[2] Sun's XACML Implementation, Programmer's Guide for Version 1.2
 July 11, 2004, Retrieved from http://sunxacml.sourceforge.net/guide.html
 Accessed on Feb 26, 2005

[3] Barry M. Leiner, Matt Bishop, Access control and Privacy in Large Distributed
 Systems, AIAA/ASIS/DODCI Second Aerospace Computer Security Conference:
 A collection of technical papers pp. 95-98 (Dec. 1986)

[4] Advanced encryption standard (AES), November 26, 2001, Federal Information
 Processing Standards Publication 197 Retrieved from
 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
 Accessed on April 6, 2005

[5] XML, Extensible Markup Language (XML) Retrieved from www.w3.org/XML/
 Accessed on March29, 2005

[6] Secret Key Distribution, Diffie-Hellman Key Exchange, Retrieved from
 http://csrc.nist.gov/publications/nistpubs/800-7/node209.html, March 19, 2005

