
USING ENCRYPTION AND TRUSTED THIRD PARTIES 

TO ENABLE DATA ANONYMITY IN THE FLOCKS 

ARCHITECTURE: A PRIVACY ENHANCING 

TECHNOLOGY 

Yipeng Liu1, Martin S Olivier2 
 

Information and Computer Security Architectures (ICSA) Research Group 
 

1yipeng.liu.sa@gmail.com, Department of Computer Science, University of Pretoria, 
South Africa 

2martin@mo.co.za, Department of Computer Science, University of Pretoria, South 
Africa 

 
 
ABSTRACT 

In recent years, the right of the privacy of the employee and the right of a company to 
monitor Web traffic through its own network has been heatedly debated. Flocks is a 
Privacy Enhancing Technology (PET) used within an organization to balance both the 
need for Web usage anonymity by employees and the need for administrators to trace 
misusers of the World Wide Web. Flocks operate by establishing a number of Web 
proxies, which randomly forward requests to each other (or to the destination Web 
server). User anonymity is preserved as no single proxy can determine the sender of the 
message.  

The current Flocks technology has several shortcomings. One problem is that the 
communication between the Flock proxies is unencrypted, and thus an administrator of 
any proxy can read the Web request in plaintext. These logs can compile a huge dossier 
of information which can be used for illicit purposes against the employee and without 
the employee’s consent. 

The aim of the paper is to investigate the use of cryptographic techniques to secure 
data anonymity while maintaining similar levels of connection anonymity of Crowds and 
Flocks. We introduce external trusted third parties in addition to the encrypted Flocks 
system to provide data anonymity for the Flocks architecture. We analyse the new Flocks 
architecture against various attacks from a threat model. The resulting improved Flocks 
technology will improve the anonymity of Web users in an organisation. 

KEY WORDS 

caching proxies, Crowds, Flocks, anonymous browsing, anonymising proxy, privacy 
enhancing technologies, data anonymity 
 



1   Introduction 
During the past few years, Web users have become increasingly aware that their Internet 
usage is not anonymous. The most commonly used Internet protocols today do not hide 
the path the data passes through the network, and the packets themselves contain 
information identifying the endpoints of a communication. The technological and 
commercial barrier of anonymous communication is further impeded by recent political 
and economic developments, from increased consumer profiling for many ends and 
purposes to plans of the US Government for Terrorism Information Awareness (DARPA, 
2003).  

This lack of privacy of Internet browsing has people trying out services that claim 
to provide anonymous browsing on the Web1. Over the years many technologies have 
been implemented and tested, using approaches such as encryption of data, pseudo 
identities and decoy data. Although many of these technologies are effective in providing 
anonymity to various degrees, most of them are not explicitly designed to be used within 
an organization and do not take caching and forensics of Web pages into account. 

One technology that does cache Web pages is the proxy. Research in proxies has 
changed from saving bandwidth to hiding the Web requester’s identity from an external 
Web server. Proxies also provide the opportunity to cache and log Web requests and Web 
pages and thus facilitate an audit trail of a user’s Internet activities. The success of proxy 
in anonymous services can be seen in anonymizer.com (2005), which although simple in 
architecture, seems to balance user anonymity against a weak threat model to achieve 
commercial success in Web browsing user anonymity. 

Several systems have later been designed to improve on the traditional proxy 
design. These anonymising proxies have the same goal of achieving sender anonymity, 
but differ in their design and services offered. We will focus on Crowds (Reiter & Rubin, 
1999) and Flocks (Olivier, 2004) and will improve and extend the ideas of the design to 
achieve better data anonymity. 

The current paper will attempt to address the question of how to achieve data 
anonymity in Flocks. This question is answered by placing a trusted third party between 
Flocks proxies and the external destination server. We consider how to encrypt the Web 
pages in all the proxies such that each Flocks proxy administrator cannot read the 
encrypted cached Web pages but the proxy can provide the user with the required Web 
pages from their encrypted caches for the user to decrypt. From this discussion, the paper 
provides a stronger Flocks architecture against attacker threats and provides data 
anonymity for Web users. 

The paper is structured as follows. Section 2 reviews the necessary background 
about PETs in general and Flocks in particular. Section 3 considers our proposed system 
of encrypted Web requests and caches and the uses of trusted third parties. We consider 
limitations and threats to the new architecture in section 4 and conclude our work in 
section 5. 

                                                 
1 www.all-nettools.com/library,privacy 



2   Overview of Other Systems 
Intensive research has been conducted in Privacy Enhancing Technologies resulting in 
several solutions to the anonymity problem. A fundamental technology for anonymous 
communication is the proxy. Essentially, a proxy works as a forwarder which accepts 
requests from computer A and passes it to computer B. In this process, computer A has 
preserved its anonymity from computer B because computer B thinks that the requests 
come from the proxy. Examples of proxies include Anonymizer2 and the Lucent 
Personalized Web Assistant (LPWA) (Gabber et al 1997; Kristol et al, 1999). Proxy 
servers are one of the cheapest and easiest ways to deploy within an organization for 
privacy protection but suffer as a single point of failure because all users need to trust the 
proxy server. The proxy can centrally log all the requests made by a user and an 
administrator of the proxy can violate a user’s anonymity by browsing and profiling all 
users’ activities. 

Other schemes of anonymity are based on Chaum’s (1981) Mixnet and the use of 
encryption between proxies to ensure anonymity. Chaining is a central technique in these 
schemes and achieves stronger security by sending a message through several anonymous 
servers and re-encodes the message such that each server only knows the previous server 
from which the message arrived and the next server to which the message is going. 
Logging at these servers thus does not reveal the sender or the receiver. A mix is a proxy 
which accepts messages encrypted with its public key, decrypts them, reorders them 
randomly, pads them to a constant size and passes them along to their destination, 
eliminating all evidence of their origin. Over the years, several variations of Mixes have 
been proposed. In timed mixes (Serjantov and Newman, 2003), messages in a mix are 
stored in a batch and then flushed at a given time interval. In threshold mixes, messages 
are stored and then flushed when the batch reaches a certain size. In continuous mixes 
(Kesdogan et al, 1998), a sender selects a delay from an exponential distribution and adds 
it to the message sent to the mix. The mix delays the message for the given time period 
before forwarding it. Besides the various types of mixes, the routing strategy for a 
message through such mixes is also important. Mix networks (Rennhard and Plattner, 
2003) use a free route strategy and mix cascades (Dingledine and Syverson, 2002) restrict 
the path a message may take through the network. Berthold et al. (2001) argue the case 
for using mix-cascade in favour of the more common mix-network. By utilizing nested 
public key cryptography as well as the padding of messages and decoy messages, Mixes 
generally offer stronger anonymity than Flocks, however Mixes suffers from high timing 
delays due to its high security levels and often require complex configurations to make it 
work properly. Flocks achieves better performance because the participant payload in 
Flocks is entirely independent of the size of the Flock. Thus Flocks has a nice scalability 
property. 

Other implemented anonymizing systems include Onion Routing, Crowds, JAP, 
Tarzan and Freenet. In onion routing (Reed et al, 1996; Reed et al 1998; Syverson et al, 
1997), the sender predetermines the route the message will follow and uses layered public 
key encryption to send messages across distributed onion routers. Tor (Dingledine et al. 
2004), the second generation of onion router addresses limitations in the original design 
by adding implementation enhancement, integrity checking, perfect forward secrecy and 
                                                 
2 www.anonymizer.com 



other improvements.  In Crowds (Reiter and Rubin, 1999), each router uses link-to-link 
encryption and randomly chooses to either forward the message to another router or to 
the final destination. JAP (2004) is a mix cascade anonymizing proxy developed in 
Germany to provide anonymity geared towards low-latency requirements such as Web-
browsing. Tarzan (Freedman and Morris, 2002) which is most similar to onion routing 
but is a peer-to-peer anonymous overlay network that provides generic IP forwarding. 
Freenet (2004) is an anonymous document publication and distribution service that uses 
encrypted data storage, geographical distribution and anonymous communication 
between nodes. All these technologies illustrate approaches to achieve sender anonymity, 
but unlike Mix Crowds, they are less feasible to use in a local Web proxy in an 
organization and are difficult to trace back to a sender during an investigation. 

3   How a trusted third party (TTP) Flocks works 
Our system, TTP Flocks provides similar anonymising Web browsing services to the 
Crowds (Reiter & Rubin, 1999) and Flocks (Olivier, 2004) concept. There are two broad 
types of anonymity: data anonymity and connection anonymity. Connection anonymity 
protects the identity of the user by disguising the communication path between the user 
and the rest of the world while data anonymity protects the identity of the user by careful 
modification of the data the user exchanges with the world. Crowds and Flocks are 
mainly designed to achieve connection anonymity. The aim of TTP Flocks is to retain the 
advantages offered by Crowds, as well as to introduce data anonymity. We will therefore 
briefly discuss Crowds and Flocks, as well as how our new architecture can improve on 
the design. 

3.1   Crowds and Flocks 
A Crowd consists of participants who want to be anonymous. It is the goal of Crowds to 
enable Web surfing that is anonymous to various attacks and has acceptable performance 
in a scalable system. Crowds assumes the premise that if a message is passed around 
within a network of computers (a Crowd) before being sent to the Web server, an 
observer can not identify the actual sender. Each member of a crowd operates as an 
anonymizing HTTP proxy server that can be used by other members of the crowd. When 
a participant needs to initiate an anonymous connection, it sends its request to another 
participant. In Crowds, the participant selection strategy is to pick up a proxy randomly 
from the crowd. On receiving the request, the participant either forwards the request to 
another proxy or finally submits it to the Web server. This selection of whether to send it 
to another participant or to the destination Web server is a length control strategy, and is 
a random decision based on some system-wide parameter Pf > ½ (where Pf is the 
probability of forwarding the request to another proxy). The final destination of the 
request message (i.e. the Web server) can only conclude that the message came from a 
member of the Crowd, but cannot tell from which member of crowd the message actually 
came from. Connection anonymity is thus preserved. 

The Crowds system also has link-to-link encryptions and a path key. Each 
intermediate link in the connection path decrypts the incoming message with the shared 
keys with its predecessor and encrypts the outgoing messages with the shared keys of its 
successor. However, since the each intermediate proxy needs to decrypt each message 
and thus able to view it in plaintext, Crowds does have a path key which is shared with 



all proxies in a connection path to enable data anonymity. Each message is thus first 
encrypted using the path key and then the link-to-link key. Only the last proxy needs to 
decrypts the message with the path key. The rest of the proxies do not decrypt using the 
path key in transit. This path key is, however, essentially unneeded; since any 
intermediate proxy can decrypt the request using the shared path key if absolutely 
needed. The link-to-link encryption keys is also established by using keys distributed by a 
“blender”, a TTP, which, if compromised can yield all the keys used by all anonymous 
connections in the Crowd. 

The Crowds system is also vulnerable both to the global passive attacker and to 
corrupted proxy members. A global passive attacker can observe the flow of a message 
request and trace the originator, while corrupted member proxies can increase the 
probability that a given member of the Crowd is the originator of a request. 

Flocks (Olivier, 2004) examined the most important parameters that influence the 
effectiveness of anonymity of a Crowds-like system, such as the Crowd size N and the 
routing parameter Pf. It also considers the use of caching as a means of improving 
performance and increasing anonymity. Flocks is designed to be used within an 
organization, and is thus controlled by a central authority. It can be deployed centrally or 
distributed across many departments. This therefore eliminates some advantages offered 
by Crowds, since Crowds is a world-wide distributed architecture. 

Our solution of TTP Flocks will introduce a secondary authority to balance the 
central authority of Flocks. We will also introduce data anonymity into the new 
architecture and thus limiting the auditing ability of the controlling organization. 

3.2   TTP Flocks  
One limitation of Flocks is that it does not encrypt the Web request that travels through 
the network, therefore, any observer on the network can easily view the request in 
plaintext. We thus need to hide the request data moving through the network against 
eavesdroppers. There are several ways to choose from to encrypt the data. Unlike 
Chaum’s Mixes, we do not want or need total anonymity since we need ways to trace the 
connection back to the originator of a request during a forensic investigation (Olivier, 
2005). We can trace the originator, for instance, when all the proxies work/collude 
together to trace from any intermediate proxy back to the initiator of the request (Olivier, 
2005). Thus the protection against colluding proxies needs to be limited to enable 
legitimate tracing of a connection.  

The Flocks architecture essentially has the same architectural design as Figure 1. 
To enable easier encryption of Web requests and Web pages and to establish a secondary 
central authority, we introduce a trusted third party in conjunction with the Flocks 
proxies. Specifically, we establish a trusted third party between Flocks and the external 
Web servers. As illustrated in Figure 2, all communications need to be passed from the 
user to Flocks to the TTP and finally to the Web server.  

 



             
 
Figure 1: Traditional Crowd/Flocks architecture    Figure 2: TTP Flocks  

With this new architecture, it is easier to enable the encryption of Web request and 
the caching of encrypted Web pages. We use an example where a user requests and 
receives a Webpage to illustrate how the anonymous connections are set up. We assume 
that a user choose to use an anonymous connection from her computer to two anonymity 
proxies, P1 and P2 (Figure 3). The user then makes a HTTP request from her browser to a 
Web server. All data is therefore sent from the user to P1, P2, TTP and finally to the Web 
server and back.  

 
Figure 3: Connection and data flow in TTP Flocks  



3.2.1   Sending the request 
Since the TTP is the last link of every anonymous connection and has the ability to send 
Web request and receive Web pages directly from the Web server, the TTP must have the 
ability to read both the Web request and Webpage in plaintext. The rest of the 
intermediate proxies, however, do not need to know what is contained in the Web 
requests or the Web pages. We can therefore hide the content of the Web request from all 
the Flocks proxies and only reveal it at the end of the connection, i.e. the TTP.  

Before the user sends the data to P1, she encrypts the Web request with the public 
key of the TTP which is known to all users and proxies. In this way, as the request moves 
through the Flocks network, it is encrypted and thus unreadable to all Flocks proxies. 
However, when the data arrives at the TTP, the TTP can decrypt the request using its 
private key and then send the request in plaintext to the external Web server.  

Besides sending the public-key encrypted Web request, the user also needs to 
compute and send the hash of the hash of the Web request, i.e. double hash the Web 
request. This is because the doubly hashed Web request is needed to identify the cached 
copies of encrypted Web pages in each proxy before it is being sent to the TTP (see 
“Receiving the Webpage” below to understand why this must be done).  

The user thus send two pieces of information to the TTP: Encrypted-using-Public-
Key-TTP(Request) for the TTP and Hash(Hash(Request)) to match encrypted copies of 
Web pages in each Flocks proxy. Finally, since the Web request (the URL) usually is a 
very small amount of text, public key encryption is a quite efficient way to encrypt the 
data.  

3.2.2 Receiving the Webpage 
When the external Web server replies back to the TTP with the Webpage, the TTP needs 
to automatically send out additional requests for images, and other non-text content, or 
alternately removes contents such as Active-X and JavaScripts. When the TTP finishes 
collecting all the elements of the Webpage, it will send the Webpage back to the user. To 
do this, the TTP encrypts the Webpage to prevent Flocks proxies from viewing the 
Webpage in plaintext. We also need the Flocks proxies to cache both the encrypted Web 
request and encrypted Webpage for future retrieval (similar to a lookup key and its 
associated content in a database), thus we need to match the request with its associated 
Webpage. For this to work, we encrypt the Webpage as follows: Firstly, the TTP encrypts 
the received Webpage using the hash of the request as the key. Secondly, to encrypt the 
request to send back to the Flocks proxies, the TTP computes the hash of the hash of the 
request or alternately, using a different hashing algorithm (than the hashing algorithm 
which encrypted the Webpage) to compute the hash of the Web request. This is because 
we do not want the Flocks proxies to be able to decrypt neither the Webpage nor the Web 
request being sent back. The TTP now sends both the hashed Web request and the 
encrypted Web pages back through all the intermediate Flocks proxies to the request 
originator. Thus each intermediate proxy in Flocks stores hash1(request) and 
encrypt(Webpage, hash2(request)) or alternately hash(hash(request)) and 
encrypt(Webpage, hash(request)) (where hash1 and hash2 refer to two different hashing 
algorithms). A theoretical concern is that since SHA-1 and MD-5 have been theoretically 



proven insecure3, perhaps some other hashing algorithm needs to be used as a hashing 
algorithm e.g. SHA-256.  

When another user wishes to retrieve the same Webpage, each proxy in the 
connection chain checks whether it is a matching Webpage before it establishes a new 
connection with another Flocks proxy or to the TTP. The proxy compares the hashed 
Web request with its cached list of hashed Web request. If there is a match, the proxy 
then returns the encrypted Webpage. Since, only the user knows the plaintext Web 
request, she can decrypt the Webpage by hashing the Web request to get the decryption 
key for the Webpage. 

4   Threats and limitations 
To properly evaluate the anonymity of TTP Flocks, we need to examine the threats and 
vulnerabilities of our new system. The security analysis of Crowds has been fairly 
thoroughly studied (Reiter & Rubin, 1999). From Reiter & Rubin’s (1999) analysis, we 
can derive that TTP Flocks is resistant against local eavesdroppers and end servers if the 
Flocks size is large. With our TTP, we have also achieved not only connection-
anonymity but also data-anonymity, since no participant Flocks proxy can decipher its 
incoming or outgoing Web request or its encrypted cache. Data-anonymity can be 
exposed, however, if the TTP is compromised. The attacker will then be able to decrypt 
all encrypted Web request and Web pages. The TTP is especially vulnerable since it is 
connected directly to the Internet. However, since data and connection anonymity are 
designed separately, even when data anonymity is exposed, connection anonymity is still 
preserved.  

An external attacker is an adversary who only has access to data that travels 
between nodes whereas an internal attacker has controls to the interior workings of a 
communication node in the system (Wright et al, 2005). We note here that we are now 
protecting the connection anonymity and not data anonymity. To prevent external attacks, 
we can encrypt the data differently on each link between each pair of proxies. These 
encryptions are named link-to-link encryptions. Crowds uses a blender to distribute link-
to-link keys; it is centrally located and is fairly permanent, i.e. long-lasting keys.  What 
we need are short-lived encryption/decryption keys that are generated as needed and 
discarded after use. These keys also needed to have the property that it is impossible to 
re-derive them from any long-term key material (Borisov et al, 2004). A long term key 
means that if an attacker intercepts and stores a message, and at a later stage, gain access 
to the decryption keys by technical or legal means, all messages, past, present and future 
messages are no longer secure. To provide link-to-link encryption, we use the well-
known Diffie-Hellman key agreement protocol (Diffie & Hellman, 1976). Diffie-
Hellman allows two users to exchange a secret key over an insecure medium without any 
prior secrets. However, since Diffie-Hellman key exchange is vulnerable to a man-in-the-
middle attack, we also need to use digital signatures and public key certificates to allow 
the two parties to authenticate themselves to each other. This may leads to a certificate 
authority (CA) to issue certificate to the TTP Flocks proxies.  

This link encryption, is not, however, enough to protect the anonymous connection 
from internal attackers. Collusion among Flocks proxies can reveal the source of a 
                                                 
3 http://www.schneier.com/blog/archives/2005/02/sha1_broken.html 



connection. For example, if P1 and P2 collude in the example in section 3, then after 
stripping away the link encryption they see the same data. The only way that we aware of 
to counter this attack, is using nested encryption suggest by Chaum’s mixes and Onion 
Routing. However, in our case, we have to tolerate colluding proxies since it is a built-in 
weakness to allow the tracing of a connection during an investigation. Although it 
provides less anonymity, it is usually more efficient as it does not need to use as many 
public key encryptions, which are very time consuming.  

Consideration must also be given to other passive attacks such as observing user 
traffic patterns and end-to-end timing correlations and Website fingerprinting 
(Dingledine et al, 2004). The complexity of these attacks are generally only feasible for 
global observers and may be beyond a limited observer’s capabilities. 

Other threats include the many forms of active attack. Active attacks such as denial 
of service can increase TTP Flocks traffic and eventually shut the system down. The best 
solution is to increase robustness of the network. Hostile Flock proxies can perform a 
man-in-the-middle attack by discarding incoming requests and creating new requests to 
direct the user to a malicious website. Some sort of end-to-end integrity checking is 
needed to prevent this type of attack. 

A possible performance bottleneck and vulnerability weakness is the single TTP 
itself. Since the TTP sits between Flocks and the Internet, it is vulnerable to attacks and 
can be a network bottleneck for the whole system. The network bottleneck can be 
ameliorated by introducing a group of TTPs. A group of TTPs between the Flocks and 
the Internet can spread the load of the network traffic between themselves. With regards 
to security, if the TTP is vulnerable and its private key compromised, at most data 
anonymity is revealed. This means that a compromised TTP will reveal to the attacker all 
plaintext web requests and replies to and from the TTP. However, connection anonymity 
will still be preserved and the attacker will still not know which user has sent for or 
received the Webpage.  

An alternative to using Flocks with TTP within an organisation is to employ a Mix 
network within the organisation. Since the organisation can control all Mixes, they can 
also perform forensic analysis to trace back the user. However, since Mixes uses layered 
encryption which is very time-consuming, we feel that the performance of a Mix based 
network will be lower than Flocks with TTPs. However, more performance evaluation 
needs to be done to support the advantages of Flocks with TTPs and compare it to other 
technologies. 

Finally, more analysis of the caching of Webpages needs to be done to determine 
how to update the cached encrypted Webpages. Perhaps some kind of time limit needs to 
be introduced to force the discarding of cached encrypted Webpages after a certain time.  

We believe that the above-mentioned threats and vulnerability are inherent in the 
original Crowds and Flocks architecture, and is not as a result of introducing a TTP. 
Since we introduced TTP in an attempt to permit data-anonymity, it does not attempt to 
patch up all the weaknesses in connection-anonymity. Overall, TTP Flocks enables data 
anonymity while maintaining similar level of connection anonymity and performance of 
Crowds and Flocks. 



5   Conclusion 
The aim of this paper was to propose an improved Flocks architecture for Web browsing 
that offered data-anonymity in addition to connection-anonymity. The Web users in an 
organization can thus hide both the contents of their communication and to a limited 
degree their identity in their Web browsing. 

We briefly looked at the structure of Crowds and Flocks and discussed some of 
their disadvantages. A TTP is inserted between it and the external Web server is then 
proposed to address the problem of data-anonymity.  

We then examined some of the drawbacks and advantages of our new architecture, 
and the impact on the level of anonymity they may have on the system. We note that 
although TTP Flocks is still susceptible to some attacks, the advantages offered by 
improved architecture outweigh the disadvantages. 

Future research will further extend the concept of a single trusted third party into 
several trusted third parties to increase performance and anonymity. We can eventually 
generalize this architecture into a chain of Flocks and establish metrics to measure 
participant payload, the link between caching and connection length and the relationship 
between the size of each network, the number of networks and the number of 
collaborating rogue proxies. These ideas still need to be formalized and analysed in 
detail. 

Finally, since TTP Flocks is presented in only in conceptual form, it would be 
interesting to compare its implementation performance with other PETs such as Crowds 
and Flocks. 

References 
Anonymizer (2005) Anonymous Browsing Gets Easier 
http://pcworld.about.com/news/Aug072001id57344.htm 
 
Berthold, O. et al (2001) The disadvantages of free MIX routes and how to overcome 
them. International workshop on Designing privacy enhancing technologies: design 
issues in anonymity and unobservability. New York: Springer-Verlag. 30-45. 
 
Borisov, N. et al (2004) Off-the-Record Communication, or, Why Not To Use PGP. 
Workshop On Privacy. The Electronic Society archive Proceedings of the 2004 ACM 
workshop on Privacy in the electronic society. New York:ACM Press. 77-84. 
 
Chaum, D. (February 1981) Untraceable electronic mail, return addresses, and digital 
pseudonyms. Communications of the ACM, 24(2). 84-88. 
 
DARPA. (2003) Report to Congress regarding the Terrorism Information Awareness 
program. http://www.iwar.org.uk/news-archive/tia/darpa-tia-report.htm. 
 
Diffie, W. and Hellman, M. (June 1976) New Directions in Cryptography. IEEE 
Transactions on Information Theory. 644-654. 
 



Dingledine, R. et al (August 2004) Tor: The Second-Generation Onion Router. 
Proceedings of the 13th USENIX Security Symposium. 303-320. 
 
Dingledine R and Syverson P (March 2002) Reliable MIX Cascade Networks through 
Reputation. Proceedings of Financial Cryptography (FC’02). London: Springer-Verlag. 
253-268. 
 
Freedman, M.J. and Morris, R. (2002) Tarzan: A Peer-to-Peer Anonymizing Network 
Layer. Proceedings of the 9th ACM conference on Computer and Communications 
Security. New York:ACM Press. 193-206. 
 
FreeNet. (2004) The Freenet project homepage. http://freenet.sourceforge.net. 
 
Gabber, E. et al (1997) How to make personalized web browsing simple, secure, and 
anonymous. Financial Cryptography '97. London: Springer-Verlag. 17-32 
 
JAP. (2004) JAP - anonymity and privacy. http://anon.inf.tu-dresden.de/index_en.html 
 
Kesdogan, D. et al (1998) Stop-and-go MIXes: Providing probabilistic anonymity in an 
open system. Proceedings of Information Hiding Workshop (IH 1998). London: Springer-
Verlag. 83-98. 
 
Kristol, D.M. et al (1999) Design and implementation of the Lucent Personalized Web 
Assistant (LPWA). Bell Labs TR. 
 
Olivier, M.S. (October 2004) Flocks: Distributed proxies for browsing privacy. In G. 
Marsden, P. Kotz´e, and A. Adesina-Ojo, editors, Proceedings of SAICSIT 2004 — 
fulfilling the promise of ICT, Stellenbosch, South Africa. 79–88. 
 
Olivier, M.S. (February 2005) Forensics and Privacy-enhancing Technologies - Logging 
and Collecting Evidence in Flocks, Accepted for presentation at the First Annual IFIP 
WG 11.9 International Conference on Digital Forensics, National Center for Forensic 
Science, Orlando, Florida, USA. 
 
Reed, M.G. et al (December 1996). Proxies for Anonymous Routing. Proceedings of the 
12th Annual Computer Security Applications Conference, IEEE CS Press, San Diego, 
CA. 95-104. 
 
Reed, M.G. et al (1998) Anonymous Connections and Onion Routing. IEEE Journal on 
Selected Areas in Communication Special Issue on Copyright and Privacy Protection. 
16(4). 482-494. 
 
Reiter, M.K. and Rubin, A.D. (February 1999) Anonymous web transactions with crowds. 
Communications of the ACM. 42(2). 32–48. 
 



Rennhard, M. and Plattner, B. (June 2003) Practical Anonymity for the Masses with Mix-
networks. Proceedings of the IEEE 8th Intl. Workshop on Enterprise Security (WET ICE 
2003). Linz, Austria. 255-262. 
 
Serjantov, A. and Neman, R.E.  (May 2003) On the anonymity of time pool mixes. 
Proceedings of the Workshop on Privacy and Anonymity Issues in Networked and 
Distributed Systems. Athens, Greece. 427-434. 
 
Syverson P.F. et al (1997) Private Web Browsing. Journal of Computer Security Special 
Issue on Web Security. 5(3). 237-248. 
 
Wright, J. (2005) Designing Anonymity: A Formal Basis for Identity Hiding. Unpublished 
PhD dissertation, University of York. 


