
LESSONS LEARNED IN THE GLOBAL DEPLOYMENT OF AN

OPEN SOURCE SECURITY SOLUTION

Barry Irwin

Rhodes University, Department of Computer Science

b.irwin@ru.ac.za

P O Box 94

Grahamstown

6140

Tel: +27 46 603 8626

ABSTRACT

This paper covers the lessons learned, and the challenges facing the deployment of an Open Source
derivative firewall and Virtual Private Network (VPN) solution into the established commercially
driven Telecommunications arena. The lessons learned and issues discussed are drawn from the
author’s own experiences having worked for a global Wireless Application Service Provider over a
three year period. Focus is placed on the issues surrounding the integration of the open source
equipment with that of the established global Telecommunications players, where compliance to
existing network standards was a requirement for connectivity.

Major stumbling blocks to the acceptance and success of the open source product were the
concerns expressed by the Telecommunications Operators relating to interoperability and
troubleshooting facilities when interfaced to their existing commercially available equipment and
existing rigid telecommunications networks. The processes resulting in the initial decision to utilise
an open source solution in preference to commercial offerings are also explored. An open source
solution was found to offer higher flexibility and functionality and greater return on investment
whilst maintaining a significantly reduced cost in comparison to commercial solutions available.

The issues surrounding the development, deployment and the challenges of ongoing
maintenance are addressed. It was found that the very flexibility which necessitated the use of the
open source product was also often a cause of frustration. The periodic review process as to the
continued satisfaction of the underlining business requirements by the developed system is also
covered.

KEY WORDS

Open Source, Security, Firewall, VPN, FreeBSD

LESSONS LEARNED IN THE GLOBAL DEPLOYMENT OF AN

OPEN SOURCE SECURITY SOLUTION

1 INTRODUCTION
The development of advanced open source operating system such as Linux, FreeBSD and
OpenBSD in recent years has opened up opportunities for high quality security systems to be
effectively built from available ‘off the shelf’ components. These resultant systems are able to offer
comparable performance and features and a substantially reduced cost to existing security offering
from commercial players such as Check Point and Cisco. Consequently an increasing number of
organisations, particularly in the SME market, are re-evaluating the potential savings investment in
such a solution could potentially offer. In the author’s experience this has been met with a mixture
of apprehension and resistance, particularly by the long established players in the global
telecommunications market.

This paper explores the reasons for this lack of acceptance by telecommunications
organisations and some of the pitfalls that an organisation adopting an Open Source solution may
not be aware of. Experience is drawn from the author’s involvement in integrating a customised
internally developed solution for a global Wireless Application Service Provider (WASP) with
Telecommunications companies and content providers in more than nine countries in four
continents over a period of nearly three years. While much has been written on the cost benefits of
open source versus proprietary solutions [1,2] little has been done when looking specifically at the
cost of security applications.

The remainder of the paper will deal with the process and business related criteria that lead to
the selection, and subsequent development of a customised open source solution for the WASP.
Finally a number of key points are raised which provide a means to evaluate at a higher
management level whether an organisation should make use of existing open source offerings, build
their own solution, or purchase an existent commercial offering.

2 CHOICE OF AN OPEN SOURCE SOLUTION
The decision by the WASP to initially implement an Open Source solution was initially arrived at
almost by default, based on a number of factors.

• At the end of 2000 the company was expanding its single South African operation into five
other countries, all having highly competitive GSM service related markets, in preparation
for listing on the London Stock Exchange. Cost at this stage was a major factor, as were
the time for the procurement of a commercial solution and the extensive training that would
be required.

• Systems staff were already familiar with open source software, with the primary production
platform being Linux based. The choice of an Open Source offering for the firewalls was a
natural choice, with FreeBSD being the final selection.

• The choice of FreeBSD as a firewall over Linux was based largely on the skill sets of the
staff concerned but also in order to provide a heterogeneous environment. In the event of
there being a kernel level exploit, the heterogeneous environment would add a measure of
protection.

• FreeBSD has also been acknowledged as having a highly robust and scalable IP stack – both
important considerations for the environment in which these systems were intended to be
operating. [3]

Following the initial deployment the requirements for a security solution were re-evaluated.
Once again an open source solution was selected. The reasons for the continued use of a non
proprietary solution were similar to those originally put forward, but with the added benefit of
flexibility for what at that time was (and remained) a very dynamic environment. In particular
some configurations for interfacing with telecommunications companies required up to thirteen
network segments protected by a pair of firewalls. The cost assuming a viable commercial solution
could be found would have been prohibitive. Given these rather divergent requirements for high
network port density, flexibility of configuration, scalability, and relatively low cost, all while
keeping within as much of the systems staff skill-set as possible, in order to minimise delays in
deployment, an Open Source solution began to look like the only viable solution.

2.1 Hardware platform
The platform that the software would run on was another concern. In some locations, lead time in
the event of equipment failure was too long and the costs of maintaining spare components too
high. The standard PC (Intel compatible x86 family) architecture was the only one that provided
the scalability and flexibility for designing solutions to satisfy the requirements. The fact that the
solution could be run on a wide range of hardware from ‘no-name’ clone systems to high end
Compaq, Dell and IBM servers was an added benefit. Where possible enterprise grade equipment
was used, but with the knowledge that in the event of a disaster a much cheaper interim solution
could be sourced and commissioned relatively quickly.

Regarding the hardware platform, the only real stumbling block was in the provision of
drivers for support of network adapters and SCSI hard disk controller, particularly those offering
some kind of raid support. A decision was made to attempt to standardise on Intel Network
Interface Cards (NIC) wherever possible and to use the D-Link quad-port cards where higher port
densities were required. Support for the Intel Gigabit network cards was added at a later stage
through the use of a kernel module. RAID cards proved to be more of an issue, particularly with
vendors such as Dell having similar named cards, requiring very different drivers. Once again the
solution was to provide support for a limited range. In most instances RAID was not required, and
standard ATA/IDE hard disk assembly was used. The cost of components was found to be
significantly cheaper than equivalent proprietary solutions particularly when looking at high port
density NIC. A proprietary solution from Cisco or Sun Microsystems could cost in excess of four
times the equivalent standard PC components.

2.2 Selection criteria
The selection criteria used were based not only on the network architecture and connectivity
requirements of the remote sites, but also on the WASP’s centralised management of its security
systems.

Remote manageability was a major factor, with particular attention being paid to the
performance over low bandwidth connectivity. The command line based interface of FreeBSD was
found to be ideal for use over 9600 baud GSM links or when international Internet connectivity was
poor. Related to this was the need for the software to be able to be administered from a secure
laptop in the event of an after hours problem. Several commercial offerings investigated required a
dedicated centralised management station. Logging and reporting were another area where an open
source solution was found to provide at least similar functionality to commercial offerings at a
vastly reduced price tag. Logs could be collected, analysed, produced and processed with freely

available tools. Additional logging requirements were easily added through modification of the
software used.

Customisability was another important factor due to the differing requirements for connecting
to carrier and content providers around the globe. Most Telco providers would allocate a particular
IP address range to be used for communications with their systems, often from one of the private IP
address block [4]. Some form of Network Address Translation (NAT) was required to ensure that
the various production servers could communicate with multiple Telco systems. Means of
connectivity were just as varied and required support, ranging from Virtual Private Network (VPN)
connections using Generic Routing and Encapsulation (GRE)[5], IP Security (IPSec)[6] and various
combinations thereof, to direct Ethernet, ISDN and Frame Relay connections. The latter two were
offloaded to a dedicated router, although direct support would have been possible given appropriate
hardware.

3 DEVELOPMENT AND DEPLOYMENT
The solution selected by the WASP matured over the course of its three year lifetime, going
through three distinct phases, discussed below. These developments were in response to direct
requirements at the business level either as a requirement from a partner, or in order to be able to
provide new services. The implementation of each of these new requirements brought about their
own technical challenges.

3.1 Development

3.1.1 The Initial System
The first iteration of the Firewall was based on a stock FreeBSD installation. The installation was
customised on a per site basis as it was installed. This fulfilled the needs of a rapid deployment, but
resulted in serious manageability and scalability issues. These were as a result of the fact that site
configurations differed widely, since the configuration had evolved during the deployment period.
While the ad-hoc configurations fulfilled the requirements at the time, together with the problems
experienced provided valuable insight as to what features were most important, and what was
lacking in terms of management functionality and support for business requirements.

3.1.2 Advanced Networking
Having the benefit of several months’ worth of hands-on data and feedback from management of
existing units, as well as clear business related technical requirements; the second firewall iteration
was produced. The primary requirements were support for Virtual Private Network (VPN)
connections to Telco’s and content providers, and increased standardisation and management
capabilities. The majority of these would be using the then newly adopted IP Security (IPSec)
protocol for providing a transport with confidentiality and integrity checking capabilities. Both of
these requirements could have been satisfied by commercial offerings, an open source based
solution was chosen for its flexibility and easy of adaptation and modification to meat the changing
demands of the environment.

 This development phase also satisfied a number of other key requirements including a
uniform automated installation process, unified basic security policy and a more intelligent
configuration system. Initial support was also added to provision for some basic redundancy in the
event of system failure. A significant benefit of the move towards a more commercial grade
offering was that the distribution and application of system patches and updates was also much
simplified, with a standardised testing, staging and rollback framework put in place.

3.1.3 Failover and Reliability
The third iteration added support for automated failover and increased reliability, and ability to
implement certain changes such as modification and debugging of Network Address Translation
(NAT) rules with a minimised requirement for downtime. This was an enhancement of work done

previously allowing the re-loading and live modification of the translation tables. The stock
FreeBSD NAT daemon [] requires a restart in order to be able to load modified rules – something
which results in downtime not viable in a ‘five nines’ Telecommunications environment. Despite
initial concerns regarding the feasibility of fully automated failover, it was found to be possible
with little modification. Initially problems were found with sharing state information between the
nodes, but this was easily dealt with. The actual failover detection and heart-beat system
implementation was based around the use of the Virtual Router Redundancy Protocol (VRRP) [7]
for detecting a failed state and switching a node between master and slave mode.

3.2 Deployment
The advent of a standardised platform meant that the system could be deployed remotely by
relatively unskilled staff at data centres with minimal intervention. Initial network and security
related configuration was based on a provided configuration file used at installation time. Post
installation configuration and site customisation then completed by the skilled administrators from a
central location – resulting in significant cost savings in terms of travel. A goal of the development
process was to enable a fairly junior level technician or at worst a technically savvy member of staff
to be able to initiate a remote installation or rebuild of a firewall in the event of a disaster. The
result was an automated installation procedure that only required prompting for the location of a
site-specific initial configuration file. A system installed in such a manner would start up in a
secure manner, only allowing configuration from the system console, or from a pre-designated
remote location. As sites grew and their requirements changed, changes were merged back into the
bootstrap configurations, further minimising the need for remote tweaking post installation. This
provided for a relatively robust disaster recover capability.

4 INTEGRATION AND OPERATIONAL ISSUES
Packet filtering firewalls, even those incorporating newer techniques such as stateful inspection, are
well understood, and have been around in increasingly advanced forms for the last twenty years.
As such very little integration trouble was experienced with the firewall side of the solution. The
major technological issue experienced by the author when integrating with partners was in setting
up IPSec based VPN connections. IPSec is a relatively new standard and systems and network
administrators have not yet generally gained experience to the level they would otherwise have with
normal IP based a communications. This was further complicated by the lack of easily available
intuitive debugging tools, for diagnosis when problems occurred. An issue relating to IPSec is
some of the idiosyncrasies of the interoperability of between equipment from different vendors –
both proprietary and open source. It is interesting to note that the KAME IPSec stack [8] used by
the FreeBSD and OpenBSD operating systems is the stack of choice, used by the VPN Consortium
for validating interoperability conformance [8,9].

4.1 Debugging Tools
The lack of debugging tools was often a major stumbling block with both parties having to rely on
arcane debug output from their respective systems, and resort to a trial and error method for
iterating through possible mis-configuration issues. In this case all vendor implementations that the
author has dealt with are defiantly at fault, providing very poor debugging output. It is envisaged
that as the IPSec standard continues to mature and becomes more widely implemented and utilised
and administrators become more familiar with the intricacies of the protocol, many of these
problems will become less serious.

IPSec provided an additional challenge of a different sort. Once VPN links were in place it
was found to be very difficult to monitor the contents of the packet payloads traversing these
tunnels, due the very nature of the encryption used. Recently tools such of TCPdump [10] have
incorporated a mode for the decryption of IPSEC Encapsulated Security Payload (ESP) [11] based

traffic, but this is at times not possible. The majority of commercial offerings encountered were
unable to provide high quality debugging output in a usable format. TCPdump is a widely used
tool for debugging of network traffic, allowing one to see what is actually transmitted ‘on the wire’
often proving key in helping detect Issues such as faulty NAT functioning, routing and firewall
filtering problems.

The open source platform due to its generic operating system origins was also able to provide
and execute a much richer selection of other debugging tools ranging from customised scripts and
tools, to more generic tools for debugging DNS and other connectivity problems. In almost all
cased the proprietary offerings were only able to offer a small feature set able to be executed on the
appliance.

4.2 Flexibility
One scenario where the flexibility of an open solution is well illustrated is when a IP based round-
robin load balancer was required. The Telco in question had a legacy piece of equipment that
imposed a rate limit for SMS submission on a per IP address basis, however they were able to
support a significantly higher rate than this device was able to allow. The solution was to install a
custom written round-robin proxy server on the security gateway, which cycled through a pool of
addresses, thereby providing an n-fold increase in throughput – all integrated transparently to the
actual SMS submission application and receiver equipment. This is something which could have
been potentially difficult to implement on a commercial closed system.

The flexibility inherent in an open source system was found to be a somewhat contentious
feature. While proprietary commercial offerings are seen as a clearly defined bundle of feature and
if a feature was lacking this was accepted. It was often viewed by management that if an open
system did not have a feature it was a serious shortcoming. In a number of cases the perceived
level of flexibility or adaptation of the open source solution far outstripped its actual practical
ability. In one particular case a requirement was raised for establishing a VPN connection by
tunnelling IPSec traffic over a GRE tunnel. While this is very much a ‘belt-and-suspenders’ type
solution, with both GRE and IPSec offering encapsulation of their payloads, it is also not
necessarily the most efficient. A problem was found with the manner in which the system kernel
processed the interaction of GRE and ESP packets, which lead to much criticism, and ultimately the
use of an external router to perform the GRE encapsulation.

4.3 Modification
By its very nature, an open source system exposes its code for public review. This proved to be of
benefit when, following an upgrade of the Operating System, the interaction between the IPSec
packet handler and the Network Address Translation process was found to have changed, resulting
in packets not being handled correctly on the firewall in some very particular and specific
configurations that had not been picked up in vendor testing. Since the source for both versions
was available, it was relatively easy to track down the change and prepare a customised patch for
the system kernel in order to change the handling to result in the previous desired outcome. A
problem like this could have taken several weeks or longer to resolve with a commercial vendor,
particularly if the number of systems affected is small.

As mentioned above, the availability and potential to deploy a wide variety of debugging and
traffic analysis tools provided an advantage over commercial systems. In almost all cases, use of
these tools with commercial systems, would have required separate monitoring systems, in addition
to the firewall/security systems, something which is not always feasible for ad-hoc monitoring. The
open source platform also provided a much richer toolset for running customised ad-hoc
applications for testing or enhanced logging when trying to debug intermittent problems.
Languages such as Perl and Python allowed for rapid development of tools where needed,
something that would have been considerably more difficult on proprietary embedded platforms.

5 REVIEW CYCLE
As with most business processes, periodic review and evaluation of a security solutions are
required. It was found that the use of the following metrics when reviewing the continued use of
the in-house solution were most relevant. The overriding question to be answered at these review
sessions was whether to continue building and maintaining the existing solution, or if it was more
economical to migrate to a commercially available offering.

• The cost of continued development and support needs to be evaluated in terms of both direct
monetary costs as well as the indirect costs of the time spent by systems staff acting in a
(usually non-core) development role. The knock-on effect that these costs could have on
other projects and operational activities, both short and longer term needs to be considered.
This is also true of a commercial offering however much of the work in this scenario is
offloaded onto the vendor, with the systems staff becoming consumers of information and
product rather than producers. Timeframes for development and implementation of features
should also be compared against the implementation or conversion costs of purchasing a
solution already offering these.

• The level to which the current solution satisfies both the current and longer term
requirements both known and forecast; and to what extent changes must be affected in order
to provide this support should also be quantified, costed and evaluated.

• Staff skill sets are another important factor when considering a change of product. The time
and cost required for training should be considered. An additional cost may also be the
requirements for external consulting services and decreased productivity during a ramp-up
period post implementation. This applies both with the tooling-up of existing staff when
migrating to a new system, be it an upgrade of an existent product or a radical shift to a new
platform. Intakes of new staff will also incur training costs of some degree.

6 CONCLUSION

6.1 Critical Factors
Open Source solutions can offer a cost effective viable solution, however care should be taken to
understand the limitations inherent in such an offering. An organisation that embarks on it’s on in-
house development or customisation of an open source based security products, in particular needs
to be aware of the following:

• Time commitments for staff to continue with maintenance and development of the solution.
This work is what would normally be performed by the product vendor and the internal staff
would only be concerned with the application and testing of updates

• A reasonable set of limits should be placed on the intended scope of the functionality of the
solution. Just because one arcane piece of hardware is desired to be supported, and this
could potentially be satisfied by the open source solution, doesn’t mean it should be. Where
special or non-common solutions are required, a business case analysis should be
performed. Development of non component-based solutions takes time and can have other
undesirable effects if not correctly managed.

• Training and documentation are two other essential components, particularly in a global
environment. This material is usually provided by a vendor or third party training provider.
With an in-house solution it needs to be developed – another time constraint which can
place severe strain on systems staff when taken in combination with normal odat to day
operational activities.

• The question of where traditional ‘tier three’ or vendor support for a product will be sourced
from. There are arguments for and against the traditional commercial model in comparison
with the plethora of self-help websites and mailing lists available for Open Source products.
There is an increasing number of companies offering dedicated support on open source
offerings. However if an open source product has already been heavily customised, the
effectiveness of utilising such an organisation may be of limited value. In cases like this
careful consideration should be given as to which route to follow. The underlying decision
that needs to be made is where to go for help in the event of a major problem not able to be
solved by one’s organisational staff.

• Management needs to have a clear understanding of the limits of what is feasible, and the
fact that this may differ significantly from what is possible given unlimited resources. In the
author’s experience, the majority of serious functionality issues addressed were related
directly to management selling vapourware, and committing to unreasonable technical
requirements in order to close a deal. Only once the deal was signed were systems staff
(usually on both sides) alerted to the fact that requirements needed to be satisfied. The
result was often drawn out communications between the technical staff of both parties trying
to cobble together a solution that would work usually resulting in significant delays in
project lunches. Managements view was often found to be that the open source solution was
clearly lacking in capability.

• Following from the above, senior management buy-in and support of any kind of in-house
development is imperative. While many managers may jump at the chance to save money
through the use of free software, the other cost factors need to be borne in mind. However
without senior management backing a solution of either kind is unlikely to attain its full
potential. This backing is particularly important when evaluating accusations of inadequacy
or malfunction from regional or branch offices. A strong backing will also ensure that
sufficient resources are dedicated for the ongoing maintenance that is required as part of the
natural evolution of a product.

• Scalability can impact heavily on the decision-making process. A solution that works well
for a single small office is highly unlikely to scale to work efficiently across numerous sites,
with marginally differing requirements in a global organisation. The opposite is also true,
although to a lesser extent. Manageability is usually the key factor. In order to be able to
administer in excess of 50 systems globally with only a small team of staff, the systems
need to be well designed understood and maintained – something that is challenging enough
on small clusters of local systems. Sufficient resources should be dedicated to fully
understanding the potential impacts of this.

• The staff involved in the development, administration and maintenance of both open source
and commercial systems are one of an organisations most valuable asset. Due care should
be taken to ensure that in the event of a disaster or staff leaving, their skills can be replaced
fairly quickly. As with all staff working with secure systems, care should also be taken to
ensure that these individuals do not become a risk to an organisation – something particular
to pay attention to in the development of an open source solution where system code could
potentially be modified. The development work of these staff should be clearly detailed in
an ongoing maintenance and project plan, and if at all possible periods of dedicated time set
aside for this work to be completed. An ideal would be to have staff solely responsible for
development, and a second component responsible for the administration of these systems.
Unfortunately this is often not feasible.

In the case in which the author was involved, the decision to finally consider a commercial
solution was motivated primarily by the near simultaneous loss of the two senior technical staff
involved in the maintenance development and deployment of the existing solution. However the

system had also begun to age rather badly, and had lacked any significant updating due to other
priorities arising – in short the organisation had outgrown the initial solutions in the face of new
business developments and strategies. The loss of these staff spelled a death knell to the project, and
provided the catalyst needed to provide a pressing need for the organisation to re-evaluate its
security requirements and migrate to a commercial offering, despite the perceived cost barrier. It is
interesting to note that even at the point where it was decided to be replaced, on a feature by feature
comparison, the open source solution scored significantly higher than a number of commercial
offerings.

6.2 The Final Word
An IT manager faced with the decision as whether to adopt an Open source solution, whether

it is based on Linux, FreeBSD, or OpenBSD should carefully consider the advantages and potential
pitfalls surrounding a solution. Each organisation will attach its own weighting to the various
criteria used in the decision making process. In many small businesses and non governmental
organisations, cost is often a significant factor, and ‘free’ solution can have a very attractive lure.
Probably the single most important factor group to evaluate are what the staffing skill currently
present are, and what the cost of training is likely to be for a new solution, and if the staff
responsible were to leave, could replacements be found? Without skilled competent staff, an in-
house solution could become a major security and maintenance problem, the same however is true
of proprietary offerings, with the exception that vendors and external consulting groups are often
able to assist in times of need.

7 REFERENCES
[1] Northwest Educational Technology Consortium: Open Options: Total cost of ownership

Online: http://www.netc.org/openoptions/pros_cons/tco.html

[2] GeodSoft 2004: Linux, OpenBSD, Windows Server Comparison: Total Cost of Ownership
Online: http://geodsoft.com/opinion/server_comp/tco.htm

[3] FreeBSD Project 2004 About FreeBSD's Internetworking Online:
http://www.freebsd.org/internet.html

[4] Rekhter Y, Moskowitz B, Karrenberg D, de Groot G. J, Lear E 1996 : RFC1918/BCP5
Address Allocation for Private Internets. IETF Publication.

[5] Farinacci D, Li T, Hanks S, Meyer D, Traina P 2000: RFC 2784 Generic Routing
Encapsulation (GRE). IETF Publication.

[6] Kent S, Atkinson R 1998: RFC 2401 Security Architecture for the Internet Protocol. IETF
Publication.

[7] Hinden R, Ed. 2004: RFC 3768 Virtual Router Redundancy Protocol (VRRP). IETF
Publication.

[8] KAME IPv6 Integration Project. Online: http://www.kame.net/

[9] Virtual Private Network Consortium (VPNC) IPSec interoperability testing. Online:
http://www.vpnc.org/conformance-logos.html

[10] Tcpdump Online: http://www.tcpdump.org/

[11] Kent S, Atkinson R 1998: RFC 2406 IP Encapsulating Security Payload (ESP). IETF
Publication.

http://www.netc.org/
http://www.netc.org/openoptions/pros_cons/tco.html

	INTRODUCTION
	CHOICE OF AN OPEN SOURCE SOLUTION
	Hardware platform
	Selection criteria

	DEVELOPMENT AND DEPLOYMENT
	Development
	The Initial System
	Advanced Networking
	Failover and Reliability

	Deployment

	INTEGRATION AND OPERATIONAL ISSUES
	Debugging Tools
	Flexibility
	Modification

	REVIEW CYCLE
	CONCLUSION
	Critical Factors

	Open Source solutions can offer a cost effective viable solu
	The Final Word

	REFERENCES
	Northwest Educational Technology Consortium: Open Options: T
	GeodSoft 2004: Linux, OpenBSD, Windows Server Comparison: To
	FreeBSD Project 2004 About FreeBSD's Internetworking Onlin
	Rekhter Y, Moskowitz B, Karrenberg D, de Groot G. J, Lear E
	Farinacci D, Li T, Hanks S, Meyer D, Traina P 2000: RFC 2784
	Kent S, Atkinson R 1998: RFC 2401 Security Architecture for
	Hinden R, Ed. 2004: RFC 3768 Virtual Router Redundancy Proto
	KAME IPv6 Integration Project. Online: http://www.kame.net/
	Virtual Private Network Consortium (VPNC) IPSec interoperabi
	Tcpdump Online: http://www.tcpdump.org/
	Kent S, Atkinson R 1998: RFC 2406 IP Encapsulating Security

