

SECURITY CONSIDERATIONS IN A GLOBAL MESSAGE

SERVICE HANDLER DESIGN (RESEARCH IN PROGRESS)

Johannes J van Eedena and Maree Patherb

a Port Elizabeth Technikon – Author
b Port Elizabeth Technikon - Co-author

a s20036227@student.petech.ac.za

b maree@petech.ac.za

ABSTRACT: Web services are generally accepted as the most interoperable application interface
today on the Web. In the context of a global electronic marketplace this is an essential factor. In
keeping with Services-Oriented Architecture trends, a Web service-based Message Service Handler
can provide a global service to all participants in the global marketplace. The main objective of this
research is to design a Web service to provide Message Handler Services, using ebXML as the
point-of-departure. The focus of this paper is to arrive at a set of pre-specified security standards to
promote the goal of interoperability, explaining, with justification, which security mechanisms
should be used within the proposed Web service model. The Web service will send messages using
the SOAP with Attachments architecture. The use of XML signatures and XML encryption within
this SOAP envelope is advised to ensure integrity, authentication and confidentiality. When the
actual SOAP envelope is transmitted over the Internet, it will be wrapped within an IPSec packet to
ensure further security.

KEY WORDS: Message Service Handler, Web service, ebXML, IPSec, TLS/SSL, XKMS,
XACML, SOAP, XML Encryption, XML Signatures, WS Security

SECURITY CONSIDERATIONS IN A GLOBAL MESSAGE

SERVICE HANDLER DESIGN (RESEARCH IN PROGRESS)

1 INTRODUCTION

In a world where more and more business transactions occur electronically, using the Internet as a
transport medium, interoperability and security have become very important. Interoperability
provides for the seamless integration and interoperation between internal and external enterprise
applications which might consist of autonomous, heterogeneous, and distributed components that
form part of loosely coupled and/or tightly coupled systems (Bouguettaya et al, 1998). To promote
interoperability, the use of the same protocols and standards are important to allow different
systems to communicate with each other. Web services have become very popular and can been
seen as a solution to address interoperability issues.

Fundamentally, a Web service can be seen as a service that is accessible over the Internet.
However, the term is more far-reaching and refers to the architecture, standards, technology and
business models that make a Web service possible. IBM (2001) defines a Web service as a new
breed of Web applications. It is stated that they are self-contained, self-describing, modular
applications that can be published, located, and invoked across the Web. Web services perform
functions, which can be anything from simple requests to complicated business processes. Gardner
(2001) states that Web services are interoperable building blocks which are used for constructing
applications. The Web services architecture enables applications to connect to other applications.

Gardner (2001) states that Web services architectures need to address discovery,
authentication, authorisation, and business models for accessing intellectual property. Another issue
is the interaction with services once they are accessed. One needs to know how to present the
resource such that these issues are addressed. Gardner (2001) states that the infrastructure for
presenting the resource is well established; it involves sending a MIME type with a document and
then using an application that knows how to deal with that document type. A problem which was
brought up with services is that there are potentially many more types of services than types of
document and that the interactions with Web services are more complex. The Web services
architecture therefore requires clients to know in advance the type of service that they will be using.

To ensure interoperability, certain standards have been developed. These standards will be
described in the next section. In section 3, the purpose of a Message Service Handler (MSH) is
discussed, followed by a proposed model explaining the need for a MSH in a global electronic
marketplace.

2 INTEROPERABILITY AND SECURITY STANDARDS

In this section the focus is on standards that are available to ensure interoperability and the required
security measurements.

2.1 Web Service Description Language (WSDL)

Communication protocols and message formats are becoming more standardized in the Web
community. The need arises for the importunateness that these communications must be described
in some structured way. WSDL (2001) addresses this need by defining an XML grammar for
describing network services as collections of communication endpoints capable of exchanging
messages. Within these XML grammar definitions, one will find documentation for distributed
systems which serve as a recipe for automating the details involved in application communications.

2.2 Universal Description, Discovery and Integration (UDDI)

A Web service can only be meaningful if potential users can find appropriate information about
how to execute them. According to the UDDI Specification (UDDI, 2002) the focus of UDDI is the
definition of a set of services supporting the description and discovery of businesses, organizations,
and other Web services providers, the Web services they make available, and the technical
interfaces which may be used to access those services. UUDI is based on a common set of industry
standards such as HTTP, XML, XML Schema, and SOAP. UDDI provides an interoperable,
foundational infrastructure for a Web services-based software environment for both publicly
available services and services only exposed internally within an organization.

2.3 Simple Object Access Protocol (SOAP)

SOAP is described by Medjahed et al (2003) as a lightweight messaging framework for exchanging
XML-formatted data among Web services, which functions using a variety of transport protocols
(e.g. HTTP, SMTP, FTP). Web services use SOAP as a messaging protocol. This adoption of
XML-based messaging facilitates interaction between heterogeneous systems.

Drummond (2001) explains that the SOAP framework begins with a normal MIME envelope
within which a XML namespace-qualified SOAP envelope is encapsulated. ebXML extends this
MIME structure by using the multipart/related framework used by SOAP with Attachments to
include additional payload data.

A major design goal for SOAP is simplicity and extensibility, according to the SOAP
Specification (SOAP, 2000). SOAP messages are fundamentally one-way transmissions from a
sender to a receiver, but SOAP messages are often combined to be used as request/response
messages. SOAP messages can be set to many different exchange patterns e.g. one way,
request/response, multicast, etc.

In terms of security, SOAP does implement some methods for integrity and privacy
protection; primarily, signatures are used within messages.

2.4 SAML

While current technologies enable an e-business to authenticate users and manage user access
privileges, it takes considerable effort and cost to extend these capabilities across an enterprise or
share them among trading partners. According RSA (2003), the Security Assertions Markup
Language (SAML) addresses this challenge. SAML is an XML-based framework that enables Web
services to readily exchange information relating to authentication and authorization. This
information takes the form of trusted statements, called security assertions, about end users, Web
services, or any other entity that can be assigned a digital identity.

There are three major types of SAML assertions.

• Authentication assertions, which are issued by an authentication service, declare that the
identity of a user or a Web service has been authenticated to access protected resources, for
example, an intranet or extranet.

• Attribute assertions, generated by an attribute service, verify that a user or Web service
possesses certain static attributes (e.g., job role or company affiliation) or dynamic attributes
(such as a consumer’s bank account balance or a reseller’s quarterly sales volume to date).
Attribute information is vital to the process of assigning Web access privileges.

• An authorization service brings together authentication assertions, attribute assertions and
authorization policies and generates authorization assertions that define which resources a
user/service is entitled to access. Because SAML shields applications from the complexity
of the underlying authentication and authorization systems, it has the flexibility to address a
range of interoperability challenges, both today and in future environments. SAML is

already being used for authorization in higher education institutions and on the public
Internet.

2.5 XACML

Griffin (2004) states that the Extensible Access Control Markup Language, or XACML promises to
standardize policy management and access decisions. XACML can be used to define a general
policy language to protect resources as well as act as an access decision language. Therefore, if a
user wants to access a resource, an authorization process is performed. This makes it a key
component in the development of authorization infrastructures and a foundational step in the
creation of federated authentication environment.

Olavsrud (2003) states that according to Sun, XACML has a number of advantages over other
access control policy languages, including:

• One standard access control policy language can replace dozens of application-specific
languages

• Administrators save time and money because they do not need to rewrite their policies
in many different languages

• Developers save time and money because they do not have to invent new policy
languages and write code to support them; they can reuse existing code

• Good tools for writing and managing XACML policies will be developed, since they
can be used with many applications

• XACML is flexible enough to accommodate most access control policy needs and
extensible so that new requirements can be supported

• One XACML policy can cover many resources; this helps avoid inconsistent policies
on different resources

• XACML allows one policy to refer to another; this is important for large organizations,
for instance, a site-specific policy may refer to a company-wide policy and a country-
specific policy.

A downfall mentioned by Griffin (2004), is the fact that XACML can increase system
overhead; in an example given - a Web page which aggregates many resources – an XACML
request is required for each resource.

2.6 XKMS

It is stated by Salz (2003) that public-key infrastructures (PKI’s) are well suited for securing Web
services, but PKI deployment is too cumbersome and costly for the technology to achieve
widespread use. The XML Key Management Specification borrows the best of PKI without
reducing scalability or security. According to XML Trust Centre (2004), the purpose of XKMS is to
define a Web services interface for a public key infrastructure. This makes it easy for applications
to interface with key-related services, like registration and revocation, and location and validation.
Developers only need to implement XKMS clients, because XKMS server components are mostly
implemented by PKI providers. XKMS is a solution for secure Web services, enabling Web
services to register and manage cryptographic keys used for digital signatures and encryption.

2.7 WS-Security

The WS-Security Specification (2004) (Web Services Security), proposes a standard set of SOAP
extensions that can be used when building secure Web services to implement integrity and
confidentiality. This provides quality of protection through message integrity, message
confidentiality, and single message authentication. These mechanisms can be used to accommodate
a wide variety of security models and encryption technologies. WS-Security is flexible and is
designed to be used as the basis for the construction of a wide variety of security models. The
specification provides three main mechanisms, namely security token propagation, message
integrity, and message confidentiality. By themselves, these mechanisms do not provide a complete

security solution. Instead, WS-Security is a building block that can be used in conjunction with
other Web service extensions and higher- level application-specific protocols to accommodate a
wide variety of security models and encryption technologies.

2.8 XML-Signatures

In an article published by Simon, Madsen, and Adams (2001), it is said that security technologies
implemented by common developments are not enough for securing business transactions over the
Web. Browser security is not enhanced or flexible enough to protect highly sensitive B2B
transactions. Transport security protocols, such as Transport Layer Security/Secure Sockets Layer
(TLS/SSL), are sufficient to protect a transaction while en-route, but the transaction components are
not protected when it is stored on a server (which might be public). The need exists for message
authentication, integrity and non-repudiation. The globally recognized method for satisfying these
requirements for secure business transactions is to use digital certificates to enable the encryption
and digital signing of the exchanged data. XML signatures are digital signatures designed for use in
XML transactions. A useful feature of XML-signatures is that it enables one to sign selective parts
of a message. Different sections of an XML document can be signed by different signatures (Simon
et al., 2001).

2.9 XML-Encryption

Using XML Encryption, certain parts of the message can be encrypted. Siddiqui (2002) states that
both encrypted and non-encrypted data can be exchanged within the same document. Another
benefit of XML Encryption is that it can handle both XML and non-XML (e.g. binary) data. The
encryption is done with symmetric encryption after a secret key is generated using asymmetric
encryption. The encryption of certain parts of a message is important when confidential information
must not be revealed to certain intermedia ries when the message is processed.

XML Signatures and XML Encryption work on the same basic principle.

2.10 IPSec

IPsec, short for IP Security, is a set of open standard protocols developed by the Internet
Engineering Task Force IETF to support secure exchange of packets at the IP layer (network
layer)(Cisco Systems, 2002). This provides security for transmission of sensitive information over
unprotected networks such as the Internet. IPsec has been deployed widely to implement Virtual
Private Networks (VPNs).

Tunnelling can be achieved using the Authentication Header (AH) protocol or Encapsulating
Security Payload (ESP). Encryption can be enforced as high as 256-bit AES (Nortel Networks,
2003). Two encryption modes exist (Cisco Systems, 2002). In tunnel mode, both the headers and
payload are encrypted. In transport mode, IP headers remain unencrypted, but payloads are
encrypted. (In tunnel mode, the inner IP header is also encrypted.) However, with transport mode
the risk of traffic analysis is possible.

2.11 TLS/SSL

TLS/SSL is a popular protocol for securing HTTP traffic. The TLS/SSL protocol suite encrypts
communications between Web servers and Web browsers for tunnelling over the Internet at the
application layer. TLS/SSL make use of standards-based encryption and authentication, and provide
secure access to data and applications over the Web (Nortel Networks, 2003). No specific software
is required to make use of TLS/SSL, because it is generally integrated into an application, e.g. a
Web browser.

It is stated by Kurlekar (2003) that TLS/SSL uses public-and-private key encryption, which
also includes the use of digital certificates. Two-way authentication is not available. This result in
anyone who has a correct username and password being able to access a TLS/SSL virtual private
network.

Problems with TLS/SSL are that it affects network throughput, because cryptographic
processing is very much CPU-intensive, and TLS/SSL is not protected against traffic analysis.
(Canavan, 2001).

3 MESSAGE SERVICE HANDLER BASED ON THE EBXML MODEL

Kiely (2001) writes that the main aim of Electronic business eXtensible Markup Language
(ebXML), which is supported by the United Nations as a standard for E-business, is to create a
single online marketplace where companies of any size or nationality can collaborate and conduct
business around the globe. ebXML can be thought of as the successor to electronic data interchange
(EDI). ebXML specifies common business processes and an architecture for carrying out those EDI
processes over the Internet. ebXML provides interoperability within and between ebXML-
compliant trading-partner applications and maximizes efficiency.

The Message Service Handler (MSH) in ebXML handles all the incoming and outgoing
messages. All communication within ebXML must take place via the MSH. The MSH interfaces
with an application that processes/generate messages. The MSH will perform authentication,
authorisation, encryption and packaging actions on messages and sends them over specified
protocols to a receiving MSH. The MSH also provides a means for error-handling.

In the current ebXML specification, it is not mandated how the MSH must be implemented. It
is assumed that not all the functionality has to be implemented. All MSH implementations must
comply with functions supported in a corresponding MSH, to enable them to communicate with
each other. If a function is not implemented, the MSH must provide an error notification stating that
the functionality is requested but not supported.

In the ebXML Message Specification (ebMS, 2002), it is dictated that the ebXML Messaging
Service be conceptually broken down into the following three
parts:

1. an abstract Service Interface
2. functions provided by the MSH
3. mapping to underlying transport services

Figure 1 shows a logical arrangement of the functional
modules existing within one possible implementation of the
ebXML Message Services architecture. These modules are
arranged in a manner to indicate their inter-relationships and
dependencies.

The Header Processing module handles the creation of the
ebXML Header elements for the ebXML Message, using input
from the ebXML application, passed through the Message Service
Interface, information from the agreed Collaboration Protocol
Agreement (CPA) governing the message and generated
information such as digital signature, timestamps and unique
identifiers.

The Header Parsing process extracts or transforms
information from a received ebXML message's Header element
into one or other form suitable for processing by the MSH
implementation.

Security Services: the message service handler can include
digital signature creation and verification, encryption,
authentication and authorization. Security services can be

Figure 1: Relationship
between ebXML MSH

Components (ebMS, 2002)

implemented by other components of the MSH including the Header Processing and Header
Parsing components.

The Reliable Messaging Service is responsible for the delivery and acknowledgment of
ebXML Messages. The service includes handling for persistence, retry, error notification and
acknowledgment of messages requiring reliable delivery.

The Message Packaging module in the message service handler is where the final enveloping
of an ebXML Message (ebXML header elements and payload) into its SOAP Messages with
Attachments container occurs.

The Error Handling component handles the reporting of errors encountered during MSH or
Application processing of a message.

A Message Service Interface is an abstract service interface applications used to interact with
the MSH to send and receive messages and which the MSH uses to interface with applications
handling received messages.

Stamps (2003) lists the following as design goals for the MSH. It should be:

• Based on standards: XML, XSLT, HTTP, SMTP, SOAP

• Flexible and adaptable processing

• An open framework for customer-specific processing

• Use native XML as much as possible

• Allow integration of existing middleware

• Support legacy integration

• Provide encryption and signature support (XML signature, XML encryption)

• Provide easy security integration

• Support access to repositories (UDDI, ebXML repository)

4 A PROPOSED MODEL

The main goal of this research is to design a Web service that will facilitate messaging in a global
electronic market, ensuring interoperability. As mentioned in section 3, the implementation of the
MSH is not mandated. This allows developers to create implementations according to their own
will, which will lead to interoperability issues, because each MSH will be based upon different
standards. By creating a Web service which facilitates the functionality of the MSH,
interoperability issues will be less, developers do not need to create their own message handlers
(Web services act as building blocks for creating applications) and the service will be based upon
the most appropriate standards. The standards discussed in this paper will primarily be considered
within this proposed Web service. The use of specific standards and protocols will be suggested;
implementations of gateways, which are used to translate between different protocols, can be very
costly and could lead to further interoperability problems.

The Web service will essentially perform message handling during electronic business
transactions. It will be responsible for the generation of a well-structured message envelope,
including the necessary security measures to guarantee the safety and validity of a specific message.

The message handling Web service will require having certain specific features – some of
which will mentioned briefly, as this research is in a very early stage. For instance, the Web service
must be downloadable onto a company’s network to be integrated into their trading system. An
adversary might want to create a denial of service attack on a specific company’s system; therefore
methods must be available to counter such attacks. Digital signatures can be used to validate a

message. If messages are received from the same IP address and the same signature, those messages
must be able to be filtered by a firewall or a similar countermeasure procedure.

If a company wants to send a message to a trading partner, an XML document will be created
by an upper- layer application (which might be another Web service) that does not form part of the
proposed Web service. If it is considered that security must be enforced within the document, it is
solely up to this upper- layer application which creates the document to implement this level of
security. For example, the upper- layer application might use WS-Security, SAML, XACML,
XKMS, XML signatures and XML encryption within the XML document, but the proposed Web
service will only accept the XML documents and attach it to the message. The Web service must be
able to validate these documents according to a public XML schema document that represents a
specific industry component. This XML document will be placed within a secure SOAP envelope
for transmission.

Once the Web service is developed, the functionality and interaction with a service need to be
described so that users know how to interact with these services. WSDL and UDDI are standards
developed to describe and present the services.

As mentioned in section 3, the use of XML is recommended within a MSH, because of its
flexible structure. The SOAP framework extends this flexibility, by allowing developers to create
their own methods. Within the proposed Web service, these methods will be restricted to providing
basic connection, choreography details, specified security measurements and the provision of
MIME attachments.

Figure 2 shows a proposed SOAP message architecture.
Italics indicate attributes and normal font indicates elements. In
the SOAP Header, the MessageHeader element includes the
version attribute, which indicates an id for a schema document
that was used to create the attached message. These documents
will be stored on a registry/repository. All the elements and
their contents must be understood by the receiving process
otherwise an error message will be created. ConversationId is a
string identifying related messages that are part of a
conversation. The service element specifies the service that
must act on the message and the action element specifies the
process of the service that must process the message. The
service and action element values must conform to those
specified in the business processes which are stored on the
(ebXML) repository. MessageData uniquely identifies the
(ebXML) messages. DuplicateElimination will prevent
messages from being processed more than once. An MSH has
to keep track of messages received in order to eliminate
already received messages. The description element is a textual
description of the message’s intent. The signature element
contains the XML digital signature of the sender. The CPAId
element, which is a reference to the Collaboration Protocol
Agreement (CPA), will be omitted from the message
architecture, because only certain protocols are allowed to be
used, therefore it is not necessary to have a CPA between
trading partners. This protocol agreement, according to ebXML
standards, is created by combining two companies’ CPP’s
(Collaboration Protocol Profiles). These CPP’s contain
information about standards used by those specific companies.
The CPA is a mutual agreement on the same standards to be

Figure 2: Proposed SOAP

message architecture

used. If there is no agreement on which standards are going to be used, no communication will be
able to take place. Using the proposed Web service, it will not be necessary to create CPA’s.

The SOAP body includes one element, the manifest. The manifest element can contain
multiple reference elements that link to the message payloads with textual descriptions of each
payload. These payloads are possible by using the SOAP with Attachments standard.

To secure the SOAP message, the WS-Security recommends XML Signatures and XML
Encryption. The message service handler will implement XML Signatures and encryption for the
entire message. XKMS will be used for the management of the relevant keys.

The SOAP message generated by the Web service will be transported using TCP, with HTTP
as the main application layer protocols.

HTTP 1.1 is a synchronous protocol that attempts immediate delivery. If delivery is not
possible, an error will occur. An HTTP-server might be unavailable, because it is down or has too
many queries to process. The sender will have to check regularly for availability, and this can lead
to high overhead.

To avoid problems like this, it would be convenient to implement a message queue where
messages will be stored until they can be processed. This can be accomplished by implementing
HTTP with message-queuing-and-forwarding where HTTP will act as an asynchronous protocol.

The proposed Web service will cater for error-checking, error-handling and auditing at
application level.

In ebXML, the digital signatures are implemented to protect the integrity and origin of
messages (ebMS, 2002), but there are still vulnerabilities present. The impact of the vulnerability
depends on the deployment environment and the transport mechanisms used to exchange these
messages.

MIME is used as the framework for the message package, containing the SOAP envelope and
any payload containers. Various SOAP envelope elements make reference to the payloads identified
via the MIME mechanisms. The MIME Content-ID: header is used to specify a unique, identifying
label for each payload. The label is used in the SOAP Envelope to identify the payload whenever it
is needed. The MIME headers are not protected, even when an XML-based digital signature is
applied. An ebXML message may be at risk depending on how the information in the MIME
headers is processed as compared to the information in the SOAP Envelope. The Content-ID:
MIME header is critical. An adversary could easily mount a denial-of-service attack by mixing and
matching payloads with the Content-ID: headers. As with most denial-of-service attacks there are
no specific protections offered for this vulnerability. An adversary could change the MIME headers
while a message is en route from its origin to its destination and this would not be detected when
the security services are validated. This threat is less significant in a peer-to-peer transport
environment as compared to a multi-hop transport environment.

However, the solution seems to be relatively simple. All messaging using TCP is generally
packaged in an Internet Protocol (IP) packet. By implementing Secure IP (IPSec, the VPN protocol
of choice) at the network layer, secure ”tunneling” between trading partners can be ensured. HTTP
messages - which may include SOAP messages, with or without MIME attachments (SOAP
payloads) will then travel in this secure tunnel. The MIME headers would then be protected within
an IPSec packet.

In IPSec tunnel mode the whole message is encrypted, whereas using the transport mode,
only the payload is encrypted. The secure tunnel mode should, ideally, be used to send messages
between trading partner, because then adversaries would not be able to obtain information from the
MIME and SOAP Headers. This type of encryption results in node-to-node encryption. However,
each receiving device would have to be an IPsec-compliant device to decrypt each packet. If the

package is not at its destination it must be re-encrypted and forwarded to the next receiving device.
Each receiving device has to have the sender’s public key for its digital certificate. Thus, transport
mode, with the traffic analysis vulnerability, is the more practical choice (providing end-to-end
encryption). IPSec provides privacy, authentication and data integrity of IP packets (Phaltankar,
2000).

IPSec is considered by Budd and Gray (2002) to be more secure than TLS/SSL. They also
state that IPSec can make use of maximum 168-bit Triple DES, whereas TLS/SSL uses maximum
128-bit RC4 encryption. It is said furthermore that TLS/SSL provides an inferior implementation of
authentication than IPSec, because it makes use of client software. A feature of IPSec is that new
algorithms, e.g. 256-bit AES encryption, can be added as they are developed.

5 CONCLUSION

In this paper the focus is on designing a secure Web service that will facilitate messaging within a
global electronic business market.

A message structure is envisaged that will contain the business documents as payloads (refer
to section 4) which is possible through the implementation of the SOAP with Attachments standard.
Actual SOAP messages will carry business document payloads and be sent through an IPSec secure
tunnel. XML Signatures and Encryption at the application level will be recommended to ensure
security within the message payload. The IP-packets containing the SOAP message will be secured
to ensure authentication, confidentiality, data integrity, non-repudiation and anti-replay protection.

Much research still needs to be conducted, but a design is being planned that will create an
enhanced Message Handler Web service, that implements the most appropriate industry standards.
A generic template from which configuration items may be selected for processing by both ends is
being considered in order to make the Message Handler service universally applicable.

6 REFERENCES

Bouguettaya, A., Benatallah, B., & Elmagarmid, A. (1998). Interconnecting heterogeneous

information systems. Boston, Mass., USA: Kluwer.

Budd, F., & Gray, D. (2002). Security - A Focus on IPSec. (Available at
http://www.wiltelcommunications.com/vpn)

Canavan, J. (2001). Fundamentals of Network Security. Artech House.

Cisco Systems. (2002). IPSec network security. (Available at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113t/%113t_3/ipsec.htm#xtoci
d0)

Drummond, R. (2001). Put SOAP and ebXML to Work. E-Business Advisor Magazine.
(Available at http://advisor.com)

ebMS. (2002, Feb). Message Service Specification Version 2.0 rev C. (Available at
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf)

Gardner, T. (2001). Introduction to Web Services. Ariadne, Issue 29. (Available at

http://www.ariadne.ac.uk/issue29/gardner/)

Griffin, P. (2004). Web services - introduction to XACML. (Available at
http://dev2dev.bea.com/technologies/webservices/articles/xacml.jsp)

IBM. (2001). Web services – the Web’s next revolution. (Available at http://www-
105.ibm.com/developerworks/ education.nsf/webservices-onlinec%ourse-
bytitle/BA84142372686CFB862569A400601C18?OpenDocument)

Kiely, D (2001). E-business Language of Choice? Information Week, 836, 79.

Kurlekar, A. (2003). Enterprise Basics: IPSec vs. SSL VPN. (Available at
http://www.esj.com/news/article.asp?editorialsId=539)

Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., & Elmagarmid, A. (2003). Business-
to-business interactions: issues and enabling technologies. The VLDB Journal, 12, 59+.

Nortel Networks. (2003). Ipsec and ssl: Complimentary solutions. (Available at
http://a2032.g.akamai.net/7/2032/5107/20021114070011/www.nortelnetworks%.com/solutions/ip_
vpn/collateral/nn102260-110802.pdf)

Olavsrud, P. (2003). Web services authentication takes leap forward. (Available at
http://www.internetnews.com/dev-news/article.php/ 1585771)

RSA. (2003). Web Services Security. (Available at http://www.rsasecurity.
com/solutions/web-services/whitepapers/WSS_WP_0802.pdf)

Salz, R. (2003). XKMS does the heavy work of PKI. (Available at
http://www.nwfusion.com/news/tech/2003/0908techupdate.html)

Siddiqui, B. (2002). Exploring XML Encryption. (Available at http://www-
106.ibm.com/developerworks/xml/library/x-encrypt/)

Simon, E., Madsen, P., & Adams, C. (2001). An Introduction to XML Digital Signatures.
(Available at http://www.xml.com/pub/a/2001/08/08/xmldsig.html)

SOAP. (2000, May). Simple Object Access Protocol (SOAP) 1.1 Specification. (Available at
http://www.w3.org/TR/2000/NOTE-SOAP-20000508)

Stamps, P. (2003). Presentation of an architecture for a message service handler. (Available
at http://www.softwareag.com/corporat/products/webservices/stamps.pdf)

UDDI. (2002, July). Universal Description Discovery and Integration Technical Committee

Specification Version 3.0. (Available at http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm)

WS-Security Specification. (2004). Web Services Security: SOAP Message Security 1.0.
(Available at http://www.verisign.com/wss/wss.pdf)

WSDL. (2001, Mrt). Web Service Description Language WSDL 1.1 Specification. (Available
at http://www.w3.org/TR/2001/NOTE-wsdl-20010315)

XML Trust Centre. (2004). Introduction to XKMS. (Available at
http://www.xmltrustcenter.org/xkms/index.htm)

The financial assistance of National Research Foundation (NRF) towards this research is hereby
acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not
necessarily to be attributed to the National Research Foundation.

