Mobile Agent Security Mechanisms

Derek Kolb

School of Information Technology

Technikon Witwatersrand.

dkolb@iafrica.com
Telephone: 083 332 9761

P.O. Box 417 Klipriver 1871

ABSTRACT

Object-oriented programming and the Internet have made mobile agents easier to develop and to use. The large amount of hosts in peer-to-peer systems and mobile agents ability to choose its next host system, seems to make peer-to-peer systems and mobile agents a perfect match. The mobile agent paradigm however requires security mechanisms to protect both the mobile agent and the host systems.

Mobile agents that need to move will require information about the potential target peer systems to determine if the systems are trusted, since systems that receive agents have the ability to destroy them. Systems that receive agents will require information about the agent requesting to enter the system, to determine if the agent is trusted. Mobile agent while active will also need to communicate securely with its “creator system”.

Mobile agent computing will require security mechanisms to function safely and correctly. This will encourage people to make use of mobile agent technology.

KEYWORDS

Encryption, Mobile agent, Host system, Encrypted functions, Blackbox protection.

Mobile Agent Security Mechanisms

1. Introduction

According to Hohl (2003) mobile agents are programs that are able to move or migrate from one host computer to the next in order to fulfil a task on behalf of the user. The mobile agents consists of: code, data or state, and execution state that allows the agent to continue executing on a host that it has transferred to (refer to Figure 1.) however, there are other models for mobile agents to follow. Bettini, Bono, and Venneri (2003) state that Object-Oriented programming and the Internet have made mobile agents easier to develop and to use, since mobile agents as Objects are easily transferred and executed on remote systems. 




Figure 1. Agent execution model, Hohl (2003).

According to Overeinder, Posthumus, and Brazier (2002) peer-to-peer systems allow people to share resources across a wide-area network such as the Internet. The major use of peer-to-peer systems today is to share files by using Napster or similar applications. There are however, peer-to-peer systems that share computational power such as SETI@home. According to Jansen (2003b) mobile agents execute autonomously, and as they interact with their host environment future hosts can be determined dynamically. The large amount of hosts in peer-to-peer systems and mobile agents ability to choose its next host system, seems to make peer-to-peer systems and mobile agents a perfect match.

According to Hohl (2003) mobile agent security systems are important since the owners of mobile agent host systems and the users of mobile agents do not want to be harmed by this technology. Jansen (2003a) and Jansen (2003b) state that there are four main threat categories namely:

· An agent attacking the host system.

· A host system attacking an agent.

· An agent attacking an agent on the host system or remote host systems.

· Other entities attacking the host system.

These security threats apply to: disclosure of information, denial of service, corruption of information, and interference or nuisance. It is also stated that as the sophistication of mobile agents increases so do the security threats and vulnerabilities, therefore if countermeasures are not in place the use of agent-based systems will be impeded.

2. Protecting the host system

According to Jansen (2003a) the mobile agent paradigm requires an agent host system to accept and execute code that has been developed by an unknown developer. An attacking agent has two attack points namely to access information without authorisation and to make use of authorised access in a disruptive fashion. Both attacks can occur when there is a lack of adequate access control mechanisms. However even without unauthorised access to resources an agent may deny service to other agents by exhausting the host systems computational resources.

According to Jansen (2003b) actions that a mobile agent can take depend on its privileges. The privileges that are assigned to the mobile agent should be transported with the agent. Mobile agents should also be protected from tampering and forgery before host entry. To prevent these problems Jansen (2003b) introduces a method for allocating and applying security policies that are flexible. The approach makes use of Public Key Infrastructure (PKI). The mobile agents that operate on behalf of organisations must follow prescribed security policies. These policies should not be programmed into the agent but rather into a PKI certificate. The privileges for the mobile agent are stored within the certificate as well as a digital signature of the mobile agent code, to prevent code tampering. However these privilege certificates should not be applied unconditionally since some agents do not require any special privileges.

According to Jansen (2003c) the digital signature is a key component to prevent an attacker from changing the code of a mobile agent. These digital signatures should be signed by a system security officer, and should be successfully verified before the agent is allowed to execute. Mobile agent hosts can also authenticate each other before allowing an agent to move, thereby preventing a direct attack on the mobile agent paradigm. However according to Hohl (2003) by following a organisational approach and only allowing trustworthy hosts to execute agents severely restricts the agents autonomy, and reduces the number of advantages of the mobile agent paradigm.

According to Jansen (2003b) java supports both digitally signed code as well as a sandbox security model. The sandbox is used to isolate memory and method access. According to Jansen (2003a) a concern is that mobile agents may affect each other on the host system. Isolated domains on the host system will prevent an agent attacking the host system and other agents executing on the host system.

3. Protecting the mobile agent

According to Jansen (2003a) most mobile agents systems assume a baseline of security namely: The agent trusts the “creator system” or host, all hosts are equally trusted and therefore have no exploits, and public key cryptography is used for digital signatures or certificates.

According to Hohl (2003) mobile agents consist of three sections namely code, data state, and execution state. According to Jansen (2003a) a host platform that receives the mobile agent can easily isolate and capture it to extract information. The host system is also able to corrupt or modify the code and state as well as terminate the agent completely. The host system in effect has total control over the mobile agent. The mobile agent may be analysed and reverse engineered to introduce subtle changes. These changes may radically change the mobile agents behaviour.

According to Sander and Tschudin (1997) when protecting agents, detecting the attacks may not be effective enough. An example of which is the detection of tampering of E-money. Often the amounts that are involved are too low for any legal actions. The culprits that commit the attack may not exist after that attack as well.

According to Hohl (2003) and Jansen (2003a) there are a number of ways to protect the mobile agent from malicious or faulty host systems:

3.1. Organisational and hardware agent protection

3.1.1. Trustworthy hosts

According to Hohl (2003) protecting mobile agents can follow an organisational approach by only allowing trustworthy host systems to execute mobile agents. This however severely restricts the mass infrastructure advantage of the mobile agent technology. However according to Jansen (2003b) only agents that require additional privileges are required to carry a certificate, therefore according to Jansen (2003c) agents should carry a digital signature for protecting the integrity of mobile agents code.

3.1.2. Tamper-free hardware

According to Hohl (2003) to protect mobile agents special, trusted, tamper-free hardware can be used. This approach is not popular since the host is required to purchase the hardware. The hardware that is used is often not scalable. 

3.2. Software agent protection

According to Hohl (2003) if both hardware and organisational methods are not viable to be used, mobile agents will have to protect themselves with the relevant software programming.

3.2.1. Time-limited Blackbox Protection

According to Hohl (2003) the Time-limited Blackbox protection is when the program code of the agent has been obfuscated by using techniques that make the program difficult to analyse. According to Jansen (2003a) obfuscated code is code that has been scrambled in such a way that no one is able to gain an understanding of the code thereby preventing code modification without detection. However there is no known algorithm to provide the Blackbox protection. According to Sander and Tschudin (1997) current code obfuscation makes code tampering difficult or expensive. Hohl (2003) notes that obfuscated code can be broken by a human attacker, given enough time. Therefore agents that make use of obfuscated code must have an expiry date at which time the agent becomes invalid. The chance of successful attacks before the agent expires is therefore minimal. Applications that are not intended for long-lived concealment are able to take advantage of time-limited obfuscated code (Jansen, 2003a). Sander and Tschudin (1997) state that whenever a new masquerade technique is developed, a countermeasure is also developed.

3.2.2. “Reference States”

According to Hohl (2003) an important class of protection is “reference states”. “Reference states” are produced by non-attacking hosts and compared to other hosts to detect modification attacks. This mechanism is intended to detect the attack, not to prevent every attack.

According to Hohl (2003) as an agent enters a host system it has an initial code, data state, and execution state which is used to start the execution. As the agent executes, it makes use of input from the host system such as a system call for a random number. Once the agent is done executing on the host it migrates to the next host. The result state is now the initial state for the next host. An attack detected by “reference behaviour” is detected by a difference in behaviour between a reference host and an attacking host. However an attack detected by “reference states” is detected by difference in resulting state. This detection only holds for modification attacks and not for read attacks on data state or execution state. Jansen (2003a) states that the results of the agent should be encapsulated for verification either by the “creator system” or by intermediate points.

3.2.3. Mutual Itinerary Recording

According to Jansen (2003a) some agents record their path histories as they move from one host system to the next. However in Mutual Itinerary Recording a cooperating agent tracks the agent in a mutually supportive arrangement. As an agent moves from one host to the next the last, current and next platform information is exchanged via a secure channel. This enables the agent moving not to move to a host that has had inconsistencies noted against it, in the assumption that there are only a few malicious hosts.

3.2.4. Itinerary Recording with Replication and Voting

According to Jansen (2003a) to ensure that an agent arrives safely at its destination host, a method of replication and voting is used. Instead of only using one agent to perform a task many agents are used in the assumption that a malicious host will only affect a few copies of the agent. The idea is that the majority of the agents will execute in the same manner. The problem with this method is that more resources are consumed.

3.2.5. Execution Tracking

According to Jansen (2003a) execution tracking is the detecting of unauthorised modifications of an agent through faithful recording of the agents behaviour. The host is required to create a non-reputable trace of the operations that are performed by the mobile agent. The trace is required to be signed by the host system. If there are any suspicious results then the traces can be checked and the malicious or faulty host can be found. The problem with this approach is the size and the number of traces that are kept. According to Hohl (2003) the traces can be hashed and signed, however the owner of the agent can only determine which host did not execute correctly since only the signed hashes are kept. The checking of traces can be done after each execution session or once the agent has finished the task. According to Sau-Koon (2000) if the traces carried by the agent are hashed, then only if the owner of the agent is suspicious about a computation session will he request the complete execution trace from the remote host system. The execution will then be simulated to check the execution.

3.2.6. Mobile Cryptography

According to Hohl (2003) one software method to protect mobile agents is with the use of mobile cryptography. Mobile cryptography works by converting mobile agent software to work with encrypted data. The mobile agent then uses encrypted parameters and returns encrypted results without the need to decrypt the data while executing. 

3.2.7. Encrypted functions

According to Jansen (2003a) and Kotzanikolaou, Burmester, and Chrissikopoulos (2003) the goal of computing with encrypted functions is to safely compute cryptographic functions such as the digital signature function even though the code is executed in an un-trusted environment. Therefore the encrypted function can be executed without the host knowing what the function does. A digital signature function with an embedded key, or un-detachable key, can be executed without the host being able to discover the key. The mobile agent is also able to use and store encrypted information on an un-trusted host system. According to Kotzanikolaou et al. (2003) this allows the mobile agent to purchase goods for a client and autonomously sign the transaction with a digital signature of the client. The requirements for the un-detachable signatures are such that:

· It must be feasible for the mobile agent to execute the encrypted function with information from the host server on the host server.

· It must be difficult to get the key by decomposing the encrypted function.

According to Sander and Tschudin (1998) the main point of encrypted functions is that the encrypted function can be executed on the host system without the need to decrypt the function first. Changing one bit of the encrypted function would be similar to changing one bit of a cipher message. Once encrypted functions are implemented the mobile agent can: 

· Protect itself from code and state tampering, as a result of not having clear-text data and code.

· Sign documents without disclosing the users private key

· Conceal the program it wants to have executed.

According to Sander and Tschudin (1997) encrypted functions protect the mobile agent, however since mobile agents move from one host to the next, a malicious host can easily capture the agent and force the agent to run often. Even if the mobile agent is encrypted, enough essential information can be recovered by continuous running. Further more Jansen (2003a) states that encrypted functions are powerful but do not protect against all security concerns such as denial of service.

4. Securing mobile agent transfer and communication

According to Kotzanikolaou et al. (2003) the principle of Remote Programming presents an alternative to Remote Procedure Calling. In Remote Programming the mobile agent itself is sent to the host instead of sending messages. Mobile agents do not require permanent connections and can make use of asynchronous communication. According to Korba (1999) communication within the mobile agent system, agent to agent or agent to “creator system”, should make use of Secure Sockets Layer (SSL) security system. However according to Farmer (2003) for secure authenticated communication, an agent will require a private key or cryptographic hash. Mobile agents however, are able to clone themselves thereby preventing authentication of one individual agent.

5. Conclusion and future work

Host systems accommodate many mobile agents and therefore need to be protected from the malicious agents so that the other agents are able to execute correctly. Allowing only mobile agents with certificates severely reduces the advantages of the mobile agent paradigm. Therefore only agents that require special privileges should have certificates, but all agents should have a digital signature to detect tampering by previous host systems. Agent host systems should make use of a sandbox to protect both themselves as well as the other agents that are running on the host system.

The mobile agents code, data state, and execution state need to be protected from the host system. The data state of the mobile agents needs to be protected from write attacks. Some protection systems only detect if the data state of the agent is not consistent, however when dealing with E-money or private information a read protection is also required. Encrypted functions seem to offer the best protection. Encrypted functions will allow the mobile agent to sign the information without the host discovering the private key. The mobile agent will also be able to read, write, and use encrypted information as well as communicate securely with its “creator system”. For these reasons encrypted functions should be researched in more detail.

Peer-to-peer systems offer a wide range of hosts for mobile agent to attain services from. However, the very nature of agent-oriented peer-to-peer system is that anyone should have the ability to develop their own mobile agent to perform their own specialised functions. Therefore research should be done on a secure mobile agent peer-to-peer framework.

Modern object-oriented programming and the Internet may create a better environment for mobile agents, but without the needed security protection mechanisms the mobile agent paradigm will be severely impeded.

References

BETTINI, L. , BONO, V. AND VENNERI, B. 2003. Coordinating Mobile Object-Oriented Code. Università di Firenze. Available at:

Http://www.di.unito.it/~bono/papers/COORD02.pdf 15-May-2003

FARMER, W. , GUTTMAN, J. AND SWARUP, V. 2003. Security for Mobile Agents: Issues and Requirements. The MITRE Corporation. Available at:

http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper003/SWARUP96.PDF 14-May-2003

HOHL, F. , 2003. A Framework to Protect Mobile Agents by Using Reference States. University of Stuttgart. Available at:

http://mole.informatik.uni-stuttgart.de/papers/icdcs2000hohl.pdf 02-May-2003

JANSEN, W. , 2000. A Privilege Management Scheme for Mobile Agent Systems. National Institute of Standards and Technology.

JANSEN, W. , 2003a. Countermeasures for Mobile Agent Security. National Institute of Standards and Technology. Available at:

http://csrc.nist.gov/mobilesecurity/Publications/ppcounterMeas.pdf 02-May-2003

JANSEN, W. , 2003b. Determining Privileges of Mobile Agents. National Institute of Standards and Technology. Available at:

http://csrc.nist.gov/mobilesecurity/Publications/PrivelageAssign.pdf 02-May-2003

JANSEN, W. , 2003c. Intrusion Detection with Mobile Agents. National Institute of Standards and Technology. Available at:

http://csrc.nist.gov/mobilesecurity/Publications/IDwMA.pdf 02-May-2003

KORBA, L. , 1999. Towards Secure Agent Distribution and Communication. Proceedings of the 32nd Hawaii International Conference on Systems Sciences.

KOTZANIKOLAOU, P. , BURMESTER, M. AND CHRISSIKOPOULOS, V. , 2003. Secure Transactions with Mobile Agents in Hostile Environments. University of Piraeus. Available at:

http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole/security/kbc00.pdf 02-May-2003

OVEREINDER, B. , POSTHUMUS, E. AND BRAZIER M. , 2002. Integrating Peer-to-Peer Networking and Computing in the AgentScape Framework. Proceedings of the 2nd IEEE International Conference on Peer-to-Peer Computing, 96-103.

SANDER, T. AND TSCHUDIN, C. , 1997. Protecting Mobile Agents Against Malicious Hosts. International Computer Sciences Institute.

SANDER, T. AND TSCHUDIN, C. , 1998. Towards Mobile Cryptography. International Computer Science Institute.

SAU-KOON, N. , 2000. Protecting Mobile Agents Against Malicious Hosts. The Chinese University of Hang Kong.

Mobile


Agent Creation





Mobile


Agent termination





input





Host 1





execution





migration





migration





execution





Host 2





input





migration





execution





Host 4





input





migration





execution





Host 3





input





Result state





Initial state








