
Access Control in a Distributed Object

Environment Using XML and Roles

Jason Crampton Hemanth Khambhammettu

Information Security Group, Royal Holloway, University of London

Royal Holloway
University of London
Egham, TW20 0EX
United Kingdom

+44 1784 443117
{Jason.Crampton,H.Khambhammettu}@rhul.ac.uk

ABSTRACT

We discuss the design of an integrated security architecture for authorization and au-

thentication in a distributed object environment. Our architecture will have four main

components: an authentication engine, an interface, a session manager and an autho-

rization engine. The core component of our model is the session manager, which issues

XML-based session certificates to authenticated users. A session certificate will be used

by the authorization engine to establish the legitimacy of an access request by a user. We

will also describe how the architecture supports dynamic revocation of session certificates

and delegation.

KEYWORDS

Roles, XML, distributed object environment, session certificate

1 INTRODUCTION

There is considerable interest in the commercial and research communities in developing

a scalable and practical model for access control in a distributed object environment.

Distributed environments possess very different features where traditional access control

schemes do not befit the requirements demanded by them. Many schemes have been

proposed towards this end, but they may not scale high or may not be flexible to be

easily integrated into other existing security architectures. We are currently developing an

integrated security architecture for authorization and authentication to meet such demands

in a distributed environment.

Role-based access control is now widely accepted as an alternative to techniques based

on the protection matrix such as access control lists. It is also widely accepted as the

basis for authorization in distributed systems containing large user groups because the

use of roles can considerably simplify access control administration [3]. The basic idea of

associating a set of privileges or permissions with a named role and assigning that role

to users is well established and is deployed in several commercial computer systems and

applications (including Windows 2000, Oracle 9, Java 1.2).

Our architecture will have four main components: an authentication engine, an inter-

face, a session manager and an authorization engine. The architecture will implement a

role-based access control model incorporating a role hierarchy, a user-role assignment re-

lation and a permission-role assignment relation. The role hierarchy is determined by the

Hasse diagram of a partially ordered set of roles 〈R,6〉.1 The user-role assignment relation

UA is a binary relation that associates users with roles. Similarly, the permission-role as-

signment relation PA is a binary relation that associates permissions with roles. Hence, an

access control decision is made by determining which roles, and hence which permissions,

a user is entitled to use.

The core component of our model is the session manager, which issues XML-based

session certificates to authenticated users. The session certificate will be used by the

authorization engine to establish the legitimacy of an access request by a user. The session

certificate is a kind of attribute certificate written in XML and is similar to a capability

card [7].

In the remainder of the introduction we discuss related work and the motivation behind

our architecture. In Sections 2 and 3 we describe the components and operation of our

1In other words, the role hierarchy is the graph of the reflexive, transitive reduction of a partial order

relation 6 defined on a set of roles R.

architecture. In conclusion we briefly summarize the contributions of the paper and identify

potential topics for future research.

1.1 Related work

SESAME [1] is a role-based security architecture based on Kerberos and the ATHENA

project at MIT [5]. SESAMEmakes use of privilege attributes certificates (PACs), a specific

form of access control certificate that conforms to ECMA and ISO/ITU-T standards, for

implementing authorization.

In the late 1990s, Fujitsu Laboratories developed the idea of a capability card, a kind

of attribute certificate specified using XML [7]. A capability card can be used to grant a

user access privileges to resources and also supports a variety of delegation mechanisms.

In this paper we synthesize the SESAME architecture and the concept of a capability

card to develop a new role-based security architecture that employs XML-based session

certificates. These certificates include a set of roles, which are used by the access control

decision point to determine whether a user’s access request can be granted based on the

assignment of capabilities to roles. Our contribution is the development of a practical model

that separates rights-granting mechanisms from decision-making mechanisms, and which

uses XML and role based access control to represent authorization related information.

1.2 Objectives and design decisions

In this section we discuss what we believe to be important criteria when developing an

integrated security architecture and the design decisions that have led to the satisfaction

of those criteria.

• Independence of authentication and authorization schemes We believe that autho-

rization schemes should be independent of the authentication scheme used. We have

therefore separated the responsibility for authentication and authorization.

• Avoid third-party trust Authorization scenarios have very different design features

compared to authentication scenarios [6]. Third-party trust in authorization scenarios

may not be ideal as the access to resources owned by a user/system can not be decided

based on the level of trust placed on a third-party. Hence we have avoided the use

of any trusted authority in our architecture.

• Inter-operability and extensibility In an increasingly interconnected world, it should

be possible to integrate the respective security architectures when applications are

required to interact. Furthermore, authorization schemes should be extensible in

order to meet the requirements of diverse and developing applications [7].

XML offers data portability and reusability across different platforms and devices. It

is also flexible and extensible, allowing new elements to be added without breaking

an existing document structure. Hence XML satisfies our requirements and is used

to represent the authorization and authentication data structures in our architec-

ture. An XML-based session certificate can be easily integrated in to other security

architectures and extended to add any further information [7].

• Scalability With the exponential growth of Internet usage and e-commerce in re-

cent years, distributed environments are becoming vitally important in the delivery

of electronic services. Such services typically have large numbers of users and com-

plex business logic. Therefore, distributed environments and any associated security

systems need to be highly scalable in order to provide fast and efficient services to

its users.

The modular design of our architecture distributes the load across various components

of the system and should therefore provide an extensible and scalable framework for

security.

• Avoid bottlenecks at access control decision point A large number of users in a dis-

tributed environment implies a large number of concurrent access requests initiated

by them. Hence it is possible that access control decision points may act as bottle-

necks thereby creating a potential threat to the system from denial-of-service (DoS)

attacks.

We avoid the problem of bottlenecks at the access control decision point by filtering

out malicious and malformed access requests. In our system, the interface checks

every access request for a genuine binding between the requestor and his session

certificate, and only allows genuine access requests to reach the authorization engine

(access control decision point).

• Separation of the rights-granting mechanism from the decision-making mechanism

Most existing authorization models propose a coordinated or combined mechanism

for granting access rights and deciding on the access requests. The rights granting

mechanism and decision-making mechanism are two very different operations and

need not be coordinated or combined together [4]. We have implemented this idea

in our system and is explained in Sections 2.2 and 2.3.

• Support for audit requirements An audit trail is an essential part of any security

architecture in order to support after-the-fact investigation of security breaches. In

our system every access request is bound to the requestor’s identity, thereby providing

the basis for a strong security audit feature.

2 SYSTEM ARCHITECTURE

Our architecture has four main components: an authentication engine, an interface, a

session manager and an authorization engine. The core component of our model is the

session manager, which issues XML-based session certificates to authenticated users. An

overview of the architecture and its operational behaviour it is shown in Figure 1.

The system also maintains the following information: a set of users U , a set of roles R,

a role hierarchy RH , a user-role assignment relation UA and a permission-role assignment

relation PA. Broadly speaking, U is associated with the authentication engine, UA and

RH with the session manager, and PA with the authorization engine.

2.1 Authentication engine

The initial point of contact for a user is the authentication engine, to which the user will

submit credentials as part of some logon procedure. The authentication engine attempts to

validate these credentials against a user data repository. If the logon process is successful,

the authentication engine creates an authentication token, digitally signs it and forwards

it to the interface.

2.2 Interface

The interface has two main functions: to assess the validity of authentication tokens,

session certificates and access requests; and to act as an access control enforcement point.

The interface handles two distinct types of requests: session certificate requests, which

are forwarded to the session manager in order to create a session certificate; and access

requests, which are forwarded to the authorization engine in order to make an access control

decision.

2.3 Session manager

The session manager issues XML-based session certificates to authenticated users in re-

sponse to session certificate requests from the interface. The session manager only accepts

requests from the interface.

Essentially, a session certificate identifies a set of roles allocated to a user for the lifetime

of the session. Session certificates are discussed in more detail in Section 3.3. Indirectly, a

session certificate grants a user a number of permissions and hence is similar to a capability

card [7] or a privilege attribute certificate [1].

2.4 Authorization engine

The authorization engine is an access control decision point and only responds to access

requests received from the interface. The session certificate will be used by the authoriza-

tion engine to establish the legitimacy of an access request by a user. Decisions are made

by the authorization engine on the basis of the role(s) contained in the session certificate

and the permission-role assignment relation.

Authentication Engine

Session Manager

Authorization Engine

Interface

User
1

2

2

4

3

5

6

1 User attempts to authenticate to Authentication Engine
2 Authentication Engine generates user's public/private key pair and authentication token: returns
 private key to user; forwards public key and authentication token to Interface
3 Interface forwards authentication token to Session Manager
4 Session Manager encrypts session certificate and sends to user
5 User sends session certificate and digitally signed access request to Interface
6 Interface verifies the authenticity of access request and forwards to Authorization Engine

Figure 1 : Overview of system architecture and operation

3 SYSTEM OPERATION

3.1 Authentication

Users will be expected to supply their credentials as part of some logon procedure. We

anticipate that authentication will be performed using a variety of existing hardware and

software mechanisms.

If the user is successfully authenticated to the system, the authentication engine gener-

ates a public/private key pair and an authentication token. The key pair will be generated

using ID-based public-key cryptography (ID-PKC) [2, 9]. ID-PKC provides several advan-

tages over traditional PKC [2, 8]; we find it particularly useful because it does not rely on

notions of third party trust. The private key is sent to the user over a secure communi-

cations channel by the authentication engine.2 The public key of the key pair is included

within the authentication token.

3.1.1 Authentication tokens

The authentication token is an XML document that conforms to a schema defined by the

interface. In addition to the public key of the user, the authentication token contains

information about the identity, location and trustworthiness of the user. (The latter is

used to generate delegation information within the session certificate.) The XML schema

for an authentication token is shown in the appendix.

3.2 Session certificate requests

The authentication engine signs the authentication token and a hash of the token and

forwards it to the interface. This authentication token is essentially a request to create

a session certificate for the authenticated user. The interface attempts to verify the hash

and digital signature of authentication token. If the digital signature and hash value are

correct, the interface forwards the decrypted authentication token to the session manager,

requesting the session manager to issue a session certificate for the user. If either the

signature or the hash are incorrect, the authentication token is ignored.

2Although at this stage we do not propose any particular protocol for the exchange of the private key,

we anticipate that a Kerberos-like protocol will be used.

3.3 Session management

The session manager receives an authentication token from the interface, which will contain

the public key of the user. The session manager consults the user-role assignment relation

and any relevant authorization policy statements and decides on the role(s) that the user

may activate in the session. (Authorization policy statements may refer to separation of

duty requirements and limitations on role activation given the location and trustworthiness

of the user’s machine. Consideration of such policy details is beyond the scope of this

paper.)

The session manager returns a session certificate to the user that is hashed and en-

crypted with the public key of the user. Hence the user can be confident that he is

communicating with the intended service if he can confirm the hash value and decrypt the

session certificate. In other words, our architecture implicitly provides mutual authentica-

tion between the user and the system.

3.3.1 Session certificates

A session certificate includes information about authentication, authorization, encryption

techniques and delegation. The XML schema for an authentication token is shown in the

appendix. The authentication information is generated from the authentication token; the

authorization data is supplied by the session manager. The encryption data is used to

determine the method under which the certificate can be encrypted, signed and hashed.

We discuss how delegation data is used in Section 3.6.

3.3.2 Dynamic revocation of session certificates

A session certificate is a static binding of a user identity to a set of roles. Hence, changes to

the user-role assignment relation and to the structure of the hierarchy during the lifetime

of a session certificate may affect the validity of a session certificate. In the simplest case,

for example, a user u could have been issued with a session certificate containing a role

r and could have his assignment to a role r revoked. Any subsequent request by u to

use a permission p assigned to r should be denied by the system. In other words, the

authorization engine must return a negative decision to the interface in response to such a

request.

Our solution is to update the session certificate when such a request is made. Specif-

ically, the session manager is aware of changes to the user-role assignment relation and

the role hierarchy and can hence compute the users that are affected by any such changes.

The session manager then sends a revised session certificate for each affected user to the

interface. When the interface receives an access request from an affected user, the revised

session certificate replaces the original certificate in the access request. The access request

is then forwarded to the authorization engine as before. The interface also returns the new

session certificate to the user encrypted with his public key.

3.3.3 Session timeout

Session certificates are associated with a timeout period that specifies their lifetime period.

Hence, the interface may receive access requests accompanied by a obsolete certificate. In

this case, the interface initiates a request to the session manager for a revised session

certificate with an extended lifetime. The revised certificate is returned to the interface

and the access request proceeds.

3.4 Access requests

Every access request is digitally signed by the user and is accompanied by the user’s

session certificate. All access requests to the authorization engine are mediated by the

interface, which acts as an access control enforcement point, thereby ensuring that the

authorization engine only considers genuine access requests. Specifically, the interface

retrieves the public-key of the user from the session certificate and only forwards the

access request if it can verify the signature of the access request.

3.5 Authorization

The session certificate is the basis for all access decisions in response to access requests.

Decisions are made by the authorization engine on the basis of the role(s) contained in

the session certificate and the nature of the access request. Specifically, a request to user

permission p will be granted if there exists a role r contained in the session certificate such

that (p, r′) ∈ PA. The authorization engine returns a decision to the interface, which is

enforced by the interface.

3.6 Delegation

The architecture allows the users/servers to delegate their privileges to other users/servers

whom they trust. The ability to delegate their privileges is determined by the authenti-

cation engine and is defined in the authentication token. The session certificate includes

a delegation element, which determines whether the certificate can be delegated and con-

strains the number of delegation certificates that can be created.

A user delegates his privileges by creating a delegation certificate that conforms to an

XML schema as defined by the interface. The user can only create a delegation certificate

if the <width> and <depth> elements contained in his session certificate are greater than

0. The width determines the maximum number of delegation certificates that the session

certificate can create. The depth determines whether a delegated user can further delegate

any session certificates he acquires.

The user then forwards the delegation certificate and information about the delegated

user to the authentication engine as part of a “proxy” authentication, which subsequently

establishes a public/private key pair and a session certificate for the delegated user. Del-

egated users are required to sign access requests with the private key supplied to them.

The details of this scheme are beyond the scope of this paper.

4 CONCLUSIONS AND FUTURE WORK

We have developed a security architecture that is independent of authentication schemes

and third party trust frameworks, extensible, employs a modular design, incorporates

division of labour, and separates the mechanisms for granting access rights and assessing

access requests. The latter feature will make a significant contribution to scalability and

manageability of the system. The proposed authorization scheme also provides a framework

for incorporating delegation mechanisms and audit facilities.

The ability for a user to delegate privileges to other users is becoming increasingly

important in computer security. We have included support for delegation in our session

certificate but a full treatment of delegation is beyond the scope of this paper. Delegation

mechanisms and the development of a complete Java-based API for the interaction amongst

the various components of the system will be the immediate priorities in our future work.

ACKNOWLEDGEMENT We are grateful to Geraint Price and Kenny Paterson for

their helpful comments on ID-PKC.

REFERENCES

[1] Ashley, P. Authorization for a large heterogeneous multi-domain system. In
Proceedings of Australian Unix and Open Systems Group National Conference (1997),
pp. 159–169.

[2] Boneh, D., and Franklin, M. Identity-based encryption from the Weil pairing.
In Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology

Conference (2001), J. Kilian, Ed., vol. 2139 of LNCS, Springer-Verlag, pp. 213–229.

[3] Gligor, V. Characteristics of role-based access control. In Proceedings of First ACM
Workshop on Role-Based Access Control (Gaithersburg, Virginia, 1995), pp. II9–II14.

[4] Karp, A., and Smathers, K. Three design patterns for secure distributed
systems. Information Security Bulletin (2003), 49–54.

[5] Neuman, B., and Ts’o, T. Kerberos: An authentication service for computer
networks. IEEE Communications 32, 9 (1994), 33–38.

[6] Nochta, Z., Ebinger, P., and Abeck, S. PAMINA: A certificate based privilege
management system. In Proceedings of Network and Distributed System Security

Symposium Conference (2002).

[7] Otani, K., Sugano, H., and Mitsuoka, M. Capability card: An attribute
certificate in XML. IETF Internet Draft, 1998. Available at
http://www.globecom.net/ietf/draft/draft-otani-ccard-00.html.

[8] Paterson, K. Cryptography from pairings: a snapshot of current research.
Information Security Technical Report 7, 3 (2002), 41–54.

[9] Shamir, A. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology - CRYPTO ’84 (1984), vol. 196 of LNCS, Springer-Verlag, pp. 47–53.

APPENDIX – XML SCHEMA

Authentication token (Token.xsd)

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="authToken" type="AuthenticationTokenType"/>

<xs:complexType name="AuthenticationTokenType">

<xs:sequence>

<xs:element name="userId" type="xs:string"/>

<xs:element name="publicKey" type="xs:string"/>

<xs:element name="domainAddress" type="xs:string"/>

<xs:element name="delegationFlag" type="xs:string"/>

<xs:element name="expiresBy" type="xs:date"/>

<xs:element name="timeStamp" type="xs:time"/>

<xs:element name="hash" type="xs:string">

<xs:attribute name="algorithm" type="xs:string" use="required"/>

</xs:element>

<xs:element name="signature" type="xs:string">

<xs:attribute name="algorithm" type="xs:string" use="required"/>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:schema>

Session certificate (Certificate.xsd)

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="certificate" type="CertificateType"/>

<xs:complexType name="CertificateType">

<xs:sequence>

<xs:element name="certId" type="xs:string"/>

<xs:element name="issuer" type="IssuerType"/>

<xs:element name="authenticationData" type="AuthenticationDataType"/>

<xs:element name="authorizationData" type="AuthorizationDataType">

<xs:element name="hash" type="xs:string"/>

<xs:attribute name="algorithm" type="xs:string" use="required"/>

</xs:element>

<xs:element name="signature" type="xs:string">

<xs:attribute name="algorithm" type="xs:string" use="required"/>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="IssuerType">

<xs:sequence>

<xs:element name="domainAddress" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AuthenticationDataType">

<xs:sequence>

<xs:element name="userId" type="xs:string"/>

<xs:element name="publicKey" type="xs:string"/>

<xs:element name="domainAddress" type="xs:string"/>

<xs:element name="expiresBy" type="xs:date"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AuthorizationDataType">

<xs:sequence>

<xs:element name="role" type="xs:string"/>

<xs:element name="policy" type="xs:string"/>

<xs:element name="delegation" type="DelegationType"/>

<xs:element name="expiresBy" type="xs:date"/>

<xs:element name="timeStamp" type="xs:time"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="DelegationType">

<xs:sequence>

<xs:element name="delegationFlag" type="xs:string"/>

<xs:element name="width" type="xs:integer"/>

<xs:element name="depth" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

