
ACCESS CONTROL AND SEPARATION OF
DUTY IN AGENT-BASED
WORKFLOW ENVIRONMENTS

Willem Engelbrecht, Reinhardt Botha and Rudi Harmse
Faculty of Computer Studies,
Port Elizabeth Technikon, Port Elizabeth
willemengelbrecht@webmail.co.za, rbotha@computer.org, rudi@petech.ac.za

Abstract
Agent Technology provides a new methodology in implementing work-

flow environments. This paper is concerned with how this shift in
paradigm affects traditional security concepts like access control and
separation of duty principles. The discussion focuses on the imple-
mentation of task allocation in an agent-based workflow environment
(AWE) that is currently being developed. Task allocation is funda-
mentally driven through constraining access of users through enforcing
constraints.

Keywords: Agents, Access Control, Separation of Duty, Task Allocation, Dynamic
Workflow Environments

1. INTRODUCTION
Agent technology has revolutionized the shape of distributed environ-

ments by fundamentally combining the functionality of the servlet and
applet. The result of this merger is the mobile agent paradigm.

Mobile agents are software abstractions that can migrate across the
network representing users in various tasks [6].

As workflow environments primarily exist in distributed environments,
the natural integration between these two technologies is obvious. The
result of this integration is an agent-based paradigm, which allows for
greater flexibility and robustness.

Autonomous agents and multi-agent systems represent a new way of
analyzing, designing and implementing complex software systems. The
agent-based view offers a powerful repertoire of tools, techniques and

1

2

metaphors that have the potential to considerably improve the way in
which people conceptualize and implement many types of software [3].

The context for this paper is an agent-based workflow environment
(AWE) that is being developed for the purpose of creating a dynamic
workflow environment. In this paper the discussion will focus on how
two traditional security principles, namely access control and separation
of duty, are affected by this shift in paradigm.

2. AWE: AN AGENT-BASED WORKFLOW
ENVIRONMENT

The proposed agent-based workflow environment (AWE) is based on
the concept that business objects control the execution of the environ-
ment.

It is this realization that led to the creation of the Agent Business
Object (ABO) which is the union of agent technology, business objects
and business logic. This ABO is the vehicle that allows the environment
to be dynamic.

As depicted in Figure 1, an ABO primarily moves between two states
(instantiated, deployed) in the AWE environment. As a business
document enters the queue it gets identified. Based on the identification
of the document an ABO is instantiated and the supporting components
for that process will be added to the ABO. The ABO is then deployed
and initiates its own internal workflow engine.

Figure 1 depicts an abstract view of the AWE environment, from
which the following five main components of an ABO can be identified:

The Core houses all common capabilities, that are shared between
agent business object instances. This includes the ability of the
agent to traverse the network, invoke services from other agents
and its own internal workflow engine.

The Tasks component houses the specifications used in an ABO
workflow engine for a specific process. This includes the sequence
in which tasks must be preformed.

Any Rules that the workflow engine needs to adhere to for a
specific process will be defined in this component. This constitutes
the constraint-base.

The Data component stores all the information that is generated
or required throughout the execution of the ABO.

The Users component stores a resolved Task-User Matrix for the
specific process.

Access control and Separation of duty in agent-basedworkflow environments 3

PROCESS
DEFINITION

R
U

N
-T

IM
E

DEPLOYED

DATATASKS

RULES

CORE

USERS

ABO
DATATASKS

RULES

CORE

USERS

ABO

DATATASKS

RULES

CORE

USERS

ABO

DATATASKS

RULES

CORE

USERS

ABO

QUEUE
DATATASKS

RULES

CORE

USERS

ABO

DATATASKS

RULES

CORE

USERS

ABO

INSTANTIATED
B

U
IL

D
-T

IM
E

BUSINESS
PROCESS

Figure 1 An abstract view of the AWE environment

It is the interaction between these components that allows the security
principles to be implemented effectively.

3. ACCESS CONTROL CONSIDERATIONS
Access Control is fundamentally concerned with the question: ”Is

this individual allowed access to a specific object?” Currently numerous
variations on implementing access control exist, but combined their goal
is to answer the above question more efficiently.

Role-based access control is being widely accepted not only as an ac-
cess control policy but also as a flexible permission management frame-
work in various commercial environments [5].

3.1. Role-Based Access Control
The central notion of role-based access control (RBAC) is that per-

missions are associated with roles, and users are assigned to appropriate
roles. Roles are created for the various job functions in an organiza-
tion and users are assigned to roles based on their responsibilities and
qualifications [7].

With RBAC, security is managed at a level that corresponds closely
to the organization’s structure [4].

4

RBAC is a mechanism that can implement a variety of policies. Sep-
aration of duty policies are often closely tied to RBAC models, because
separation of duty is critical in many commercial applications [4].

3.2. Separation of Duty
The purpose of separation of duty is to prevent fraud by requiring the

involvement of more than one individual in completing a process.
When implementing separation of duty using constraints, two types

of mutual exclusion are considered, authorization-time exclusion and
run-time exclusion. Authorization-time exclusions are mutual exclusion
rules that are applied at role-authorization time. Run-time exclusions
are applied at run-time during a user session. These forms of exclusions
have been termed static and dynamic separation of duty [4].

Static separation of duty requirements can be satisfied by the as-
signment of individuals to roles. Static separation of duty requires
that the same user cannot be made a member of mutually exclusive
roles [5].

Dynamic separation of duty allows one user to be a member of
mutually exclusive roles, but places constraints on the simultane-
ous activation of roles [5].

To enforce the separation of duty requirements, although an integrity
requirement, relies on an access control service that is sensitive to the
separation of duty requirements [2].

Essentially separation of duty requirements are implemented by con-
straining users access.

3.3. Constraining Access
Constraints on role and user assignments to tasks in a workflow are

at the heart of implementing RBAC and separation of duty.
Three main categories exist according to the time at which constraints

can be evaluated [1], namely:

Static constraints can be evaluated without executing the work-
flow.
Task T2 has to be preformed by role R3.

Dynamic constraints can be evaluated only during the execution
of the workflow, because they express restrictions based on the
execution history of the workflow.
If four activations of task T1, within the same execution of the workflow, is

Access control and Separation of duty in agent-basedworkflow environments 5

aborted by the same user, then that user is not allowed to execute task T1

anymore.

Hybrid constraints are constraints whose satisfiability can be par-
tially verified without executing the workflow.
If a user belongs to role R1 and has performed task T1, then he/she cannot per-

form task T4. This constraint is also an implementation of dynamic separation

of duty principles.

The aforementioned access control considerations will be demonstrated
through the scenario of a tax refund process.

="TRUE"

="FALSE"

TASK 2 B

APPROVE / DISSAPROVE
CHECK

TASK 2 A

APPROVE / DISSAPROVE
CHECK

PREPARE CHECK

TASK 1 TASK 3

FINALIZE DECISION

TASK 4

ISSUE CHECK

TASK 5

 VOID CHECK

Figure 2 Workflow: Tax Refund

4. SCENARIO: TAX REFUND PROCESS
The Tax Refund process is defined as consisting out of 5 tasks as

depicted in Figure 2. Task–1: Prepare Check requires the user to
gather all information regarding the application for a tax refund. This
task is to be completed only by a clerk. If a user cancels this task, for
more than four times within the same execution of the workflow, then
that user is not allowed to perform this task again.

Task–2: Approve/Disapprove Check follows on the completion
of Task–1. Task–2 is duplicated into Task–2A and Task–2B for the
purpose of serializing the workflow. Serialization was chosen for its sim-
plicity in implementation, in principal the result of the aforementioned
approach would be identical to a parallel execution.

Task–2A and Task–2B requires the users to review the information
gathered in Task-1. These tasks must be preformed by two separate
users belonging either to the role of manager or director. If either of the
users disapproved the check it must earmarked to be voided.

Task–3: Finalize Decision follows on the completion of Task-2B.
This task requires the user to review the decision made by the users
that has preformed Task–2A and Task–2B to ensure that it is valid,
thus finalizing the decision. This task is to be completed only by a user

6

that belongs to the role of director or higher, who have not taken part
in Task 2A or Task 2B.

Based on the decisions of the users that completed Task–2 the check
will either be voided or issued.

Task–4: Issue Check requires the user to issue the check. The
user that performs this task cannot have any relation to the user that
completed Task–1. This task is to be completed by a clerk or a role
higher on the role order.

Task–5: Void Check is an automated task and the capabilities to
perform this task is stored in the ABO. This task only requires that the
decisions that have been made must be stored.

Constraints specific to this process are defined in Figure 3. It must be
noted that in a real world example there could be additional constraints.

The specific semantics for defining the constraints is not important for
this paper, therefore we use an intuitive constraint language as follows:

T1 DO BY ONLY[CLERK]– Task–1 must only be done by a user of
the role clerk.

U !DO T1 & T4 – A user must not do Task–1 and Task–4.

{U DO T4} !REL {U DO T3} – A user that preforms Task–4 must
have no relation to the user that preformed Task–3.

5. TASK ALLOCATION
Conceptually Figure 1 depicted how AWE will implement its access

control policy. Initially the entire role hierarchy, task definitions, work-
flow specifications of each process and user assignments for the environ-
ment will be defined during build-time. As a business object enters the
AWE environment at run-time it will be identified and the process of
preparing the ABO for deployment will commence. The queue is re-
sponsible for generating the appropriate supporting components for the
process that will be used in the ABO. This starts the process of static
task allocation.

5.1. Static Task Allocation
The Static Task Allocation process is divided into two phases.
Phase 1 is concerned with applying the static constraints as depicted

in Figure 3. To this end, the Role-user hierarchy as depicted in Figure 4 is
used as it was defined at run-time. To demonstrate how static constraints
are applied, consider the static constraint T1 DO BY ONLY[CLERK].

The constraint specifies that Task–1 can only be completed by a user
of the role clerk. From Figure 4 if can be observed that there are three

Access control and Separation of duty in agent-basedworkflow environments 7

CONSTRAINTS : TAX REFUND

HYBRID

U !DO T2 A & T3

U !DO T1 & T4

U !DO T2 A & T2 B

{U DO T4} !REL {U DO T3}

STATIC

T1 DO BY ONLY [CLERK]

T2 DO BETWEEN
[MANAGER] & [DIRECTOR]

T3 DO BY [DIRECTOR]

T4 DO BY [CLERK]

DYNAMIC

{U ABORT T1} U !DO 4X

U !DO T2 B & T3

Figure 3 Tax Refund: Constraint Base

RELATIONS

U1 REL U6
MANAGER U2 U3

U1 DIRECTOR

U0 EXECUTIVE

CLERK U4 U5 U6

Figure 4 Tax Refund: Role Hierarchy

USER 6TASK 1 USER 4USER 5

USER 1USER 3TASK 2 A

TASK 2 B USER 1USER 2USER 3

TASK 3 USER 1

TASK 4
USER 4USER 5

USER 2

USER 3USER 6

USER 2

USER 0

USER 1 USER 0

Figure 5 Task-User Matrix

users assigned to the role clerk namely, User–4, User–5 and User–6.
These users are then assigned to Task–1. The result of applying all the
static constraints that have been specified in the constraint base is the
Task-User Matrix as depicted in Figure 5.

The Task-User Matrix and the constraint base depicted in Figure 3
are used as input for Phase 2.

Phase 2 is concerned with enforcing the hybrid constraints of the
constraint base. Figure 6 depicts the process whereby the hybrid con-
straints are enforced on the Task-User Matrix.

The task with the lowest user count is selected as the starting point.
In the example in Figure 5 this is Task–3 with only two users. As

there are more than one user, the selection will be based on the workload
of the users. We will assume User–1 has the lightest workload. From
the constraint base depicted in Figure 3 it can be determined that there
are two constraints that applies to task–3.

The first states that if User–1 performs Task–3, he/she cannot perform
Task–2A or Task–2B, thus User-1 is removed from these conflicting tasks.
As there are remaining users at these tasks, phase 2 can continue.

The second constraint that applies is that the user that performs
Task–3 can have no relation to the user that performs Task–4.

8

START WITH TASK WITH
LOWEST USER COUNT

UC > 1

="YES" ="NO"

DOES CONSTRAINT
REMOVE ONLY USER FROM

ANOTHER TASK

REMOVE USER
AT CONFLICTING

TASK

ASSIGN USER WITH LOWEST
WORKLOAD TO TASK

ASSIGN USER
TO TASK

UC = 0

UC = 1

CONSTRAINTS
REMAINING

="YES"

="NO"

="YES"="NO"

DOES CONSTRAINT
REMOVE ONLY USER FROM

ANOTHER TASK

CONSTRAINTS
REMAINING

="YES"

="NO"

FAILED

="NO"

="YES"

IS THIS THE
LAST TASK

SUCCESS

MOVE TO NEXT TASK WITH LOWEST USER COUNT

REMOVE USER FROM TASK

Figure 6 Process Algorithm for Task Allocation Phase: 2

From Figure 4 it is observed that User–1 and User–6 are related. As
can be seen in Figure 5, User–6 is authorized to perform Task–4. The
constraint can therefore be enforced by removing User–6 from Task–4.
Since there are remaining users at Task–4, phase 2 can continue.

As all constraints that are specified for Task–3 have been successfully
applied, phase 2 now moves to the next task, being the task with the
lowest user count.

In the scenario this task is Task–2A which only has two users. We
will assume that User–3 has the lightest workload. From the constraint
base two constraints can be identified, namely that a user cannot per-
form both Task–2A and Task–2B. User–3 is thus removed from Task–2B
because there are still users remaining at Task–2B the constraint is valid.

The next constraint is that a user cannot perform Task–2A and Task–
3. This constraint was enforced when Task-3 was resolved. The user
that performed Task–3, namely User–1 was removed from the Task-User
Matrix at Task–2A. Thus selecting the user with the lightest workload
namely User–3 would be sufficient to enforce this constraint.

Access control and Separation of duty in agent-basedworkflow environments 9

The task which now has the lowest user count is Task–2B, with only
one user assigned, namely User–2. The process depicted in Figure 6
indicates that when the user count is 1 (UC = 1), the user must be
assigned, regardless of their workload. Nonetheless the constraints still
apply.

From the constraint base two constraints can be identified. The first
constraint states that a user cannot perform both Task–2B and Task–
2A. Since Task–2A is resolved, and the user that performed Task–2A
was removed as a valid choice in the Task-User Matrix for Task-2B the
constraint is enforced.

The second constraint specifies that a user cannot perform both Task–
2B and Task–3. Since Task–3 is resolved, the constraint is enforced,
because the user that performed Task–3 was removed as a valid choice
in the Task-User Matrix for Task–2B. Thus User–2 is a valid choice.

The next task to be resolved is Task–1 with three users. We will
assume that User–4 has the lightest workload. From the constraint base
it can be identified that there is only one constraint that applies, namely
that a user cannot perform both Task–1 and Task–4. Thus User–4 is
removed from Task–4. As there are remaining users at Task–4 the con-
straint is validated. Thus User–4 is assigned to Task–1.

Task–4 is the final task to be resolved. From the constraint base it can
be identified that there is only one constraint that states a user cannot
perform Task–1 and Task–4. As Task–1 has already been assigned, this
constraint was enforced and the user that performed Task–1 namely
User–4 was removed as a valid choice to perform Task–4. We will assume
User–5 has the lightest workload. Thus User–5 is assigned to Task–4.

Because all tasks has been assigned a user, Phase 2 is successful.
This resolved Task-User Matrix is then injected into the ABO. The

performance of the agent business object’s own internal workflow engine
is improved by not being burdened with the process of resolving the
role-hierarchy for each task after its deployment and by validating the
Task-User Matrix, improving the stability of the execution.

5.2. Dynamic Task Allocation
Dynamic Task Allocation is enabled through the activation of dynamic

constraints. From the constraint base it can be identified that there is
one dynamic constraint. The constraint specifies that if four activations
of task T1, within the same execution of the workflow is aborted by the
same user, then that user is not allowed to execute task T1 anymore.

If this constraint was activated through the actions of User–4 the
ABO will return the Task-User Matrix to its original state, where it will

10

enforce this constraint by removing User–4 as a valid user from Task–1.
The ABO will not redo any tasks that have been successfully completed
to this point. Unfortunately the constraint applies to Task–1, thus no
other task has been completed. It will then internally resolve the Task-
User Matrix as defined in phase 2 of static task allocation.

In the event that this dynamic constraint results in the tax refund
process failing, the ABO will return to the Queue where it will raise an
exception.

5.3. Optimizing Task Allocation
Each time a process, for example the tax refund process, is successfully

completed the resolved Task-User Matrix for that process is stored. Thus
creating a set of users that were involved in the execution of each task
in the process.

Figure 7 depicts three of these sets (A,B,C). Thus at the completion of
every instance of the process, the set will be merged with the collective.
It must be remembered that this collective is only valid as long as the
constraints that apply to the process have not changed. If a new user is
added, it will only affect the collective by spawning a new path for this
user. As this user is also subjected to the same constraints that were
applied to the existing users. Thus allowing the constraint base to be
logically enforced. A path through the collective is now only dependant
on the users’ individual workloads.

SET- A SET- C

TASK 1

TASK 2B

TASK 3

TASK 4

TASK 2A

SET- B

USER 3

USER 2 : TASK 2B
USER 1

TASK 5

USER 2 : TASK 2A

COLLECTIVE

Figure 7 Optimization of Task Allocation

The collective can only be used as a alternative to phase 2 of static
task allocation once it has reached a point of sufficient saturation.

Access control and Separation of duty in agent-basedworkflow environments 11

This approach also allows exceptions to be handled efficiently. In
the event that User–2 at Task–2B cannot complete the task, one only
needs to move to the parent node of User–2, namely User–3, and it can
immediately identified that User–1 is a valid alternative to User–2 as
depicted in Figure 7. Thus the process will then continue at User–1.

By providing sample workloads for each user in the Task-User Matrix
for a specific process, a collective can be pre-generated without having to
deploy the ABO. Thus reducing the time it takes to sufficiently saturate
the collective.

6. CONCLUSION
AWE implements the concept of separation of duty, through the abil-

ity of the agent business object, to dynamically assign tasks to the users
at run-time. Thus constraints can be placed to ensure that an individual
is not allowed to initiate and approve a process.

The fact that the agent business object is also responsible for select-
ing the next user, based on his/her respective workloads, exponentially
increases the number of individuals required to perform a successful con-
spiracy.

References

[1] Bertino, E., Ferrari, E., and Atluri, V. (1999). Specification and en-
forcement of authorization constraints in workflow management sys-
tems. ACM Transactions on Information and System Security, 2(1):65
– 104.

[2] Botha, R. and Eloff, J. (2001). Separation of duties for access con-
trol enforcement in workflow environments. IBM Systems Journal,
40(3):666 – 682.

[3] Jennings, N., Sycara, K., and Wooldridge, M. (1998). A roadmap of
agent research and development. Journal of Autonomous Agents and
Multi-Agent Systems, 1:275 – 306.

[4] Kuhn, D. (1997). Mutual exclusion of roles as a means of implement-
ing separation of duty in role-based access control systems. Proceed-
ings of the 2nd ACM Workshop on Role-based Access Control, pages
23 – 30.

[5] Lee, H. and Noh, B. (1999). An integrity enforcement application
design and operation framework in role-based access control systems:
A session-oriented approach. Proceedings of the 1999 International
Workshops on Parallel Processing, pages 179 – 184.

12

[6] Milojicic, D. (1999). Mobile agent applications. IEEE Concurrency,
pages 80 – 90.

[7] Sandhu, R. S., Coyne, E. J., Fenstein, H. L., and Youman, C. E.
(1996). Role-based access control models. IEEE Computer, 29(2):38
– 47.

